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1 Introduction

1.1 Background and literature review

Cell detection is an essential task in microscopy image analysis, as accurate cell
segmentation maps are a prerequisite for downstream analysis by biomedical prac-
titioners and researchers. This task was historically performed through manual an-
notation, but the advent of high-throughput imaging techniques in recent decades
has prompted a shift away from this labor-intensive approach and toward auto-
mated detection algorithms [1]. Software pipelines such as CellProfiler [2] and
ImageJ [3] are commonly used for routine segmentation due to their relatively sim-
ple interfaces, but deep learning methods are the current state of the art among
cell detection algorithms, as architectures based on convolutional neural networks
(CNNs) have proven to excel at characterizing cells and tissues in microscopy
images [4]. However, successful training of these deep networks requires a high
volume of manually segmented example images, and their applicability to specific
cell or tissue types is limited to those that are represented in the training set
[5]. In addition, these models are not well suited for analyzing images that depict
dense regions of clustered or overlapping cells, as the point estimates they produce
do not capture the inherent ambiguity of cell positions and properties in crowded
images [6].

The Bayesian paradigm is a potentially convenient alternative in this setting be-
cause it provides calibrated uncertainty estimates for ambiguous images and en-
ables biomedical experts to incorporate prior information based on their domain
knowledge. A typical Bayesian approach to this task is to treat the pixel intensi-
ties of an image as observed random variables x and the properties of the imaged
objects as latent random variables z, and to characterize the posterior distribu-
tion p(z |x) via Monte Carlo samples or a variational approximation. This is a
challenging environment for inference because it is inherently transdimensional —
the number of cells in a microscopy image is generally not known a priori, and
hence the number of unknown model parameters to infer is itself unknown. As
such, most previous attempts to tackle cell detection through a Bayesian lens have
relied on transdimensional sampling algorithms. Perhaps the most prominent ex-
ample is the work of Al-Awadhi et al., who used birth-death Markov chain Monte
Carlo (MCMC) [7]. However, the transdimensional proposals required by these
algorithms are notoriously difficult to design and may result in slow mixing if they
are designed poorly [8].

1.2 Contribution and outline

Motivated by the shortcomings of deterministic software pipelines, CNNs, and
transdimensional MCMC algorithms, we propose a novel approach to probabilistic
cell detection for crowded fluorescence microscopy images. Our approach, which is
based on likelihood-tempered sequential Monte Carlo (SMC) samplers [9], lever-
ages the parallel processing capabilities of modern GPU computing, and it does
not require the user to design, or subsequently sample from, transdimensional
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proposals. The remainder of this report is guided by the following objectives:
(1) Determine the necessary components of a realistic Bayesian model of cells in
microscopy images and design an efficient SMC sampler to target the posterior
distribution induced by this model; (2) assess the statistical and computational
performance of our SMC sampler in a simulation study involving synthetic images
generated from a simplified version of our Bayesian model; and (3) compare the
accuracy and calibration of our sampler’s posterior estimates for several relevant
cell detection metrics to a popular open-source cell segmentation pipeline based
on thresholding and the watershed algorithm [10].

2 Methods

2.1 Notation and Bayesian model

We aim to formulate a model of potentially clustered or overlapping cells in mi-
croscopy images that is generic enough to serve as a reasonable baseline for our
evaluation of our SMC sampler, but rich enough to provide a realistic approxima-
tion of actual fluorescence microscopy images. To make these requirements more
concrete, we will design a model that yields images similar to a set of 200 bone cell
nuclei images published by the Broad Bioimage Benchmark Collection (image set
BBBC039) [11]. Our prior and likelihood are heavily informed by previous models
of cells in images, namely Al-Awadhi et al. [7] and Lehmussola et al. [12].

Let c denote the number of cells in an image of height H pixels and width W
pixels. We will henceforth refer to c as the cell count of the image, and we define
c ∼ Uniform{0, 1, 2, ..., D} for some maximum number of cells D. Each cell in
the image has a location and a fluorescence (i.e., brightness). Given c, we model
iid locations u1, u2, ..., uc ∼ Uniform([0, H]×[0,W ]) and fluorescence magnitudes
f1, f2, ..., fc ∼ Uniform(fmin, fmax). The parameters fmin and fmax depend on the
microscope used to capture the images, but are commonly chosen to reflect either
an 8-bit scale (with values between 0 and 255) or a 16-bit scale (with values
between 0 and 65,535). We used the former in our simulation study since we
found that large fluorescence values tended to result in highly peaked likelihoods
in practice, which hindered the performance of our sampler.

Cell shapes are irregular in general, but they are typically well modeled by el-
lipses. As such, we assume that each cell in the image has an angle, a major
axis, and a minor axis. Given c, we model iid angles θ1, θ2, ..., θc ∼ Uniform(0, π),
major axes α1, α2, ..., αc ∼ Uniform(αmin, αmax), and minor axes β1, β2, ..., βc ∼
Uniform(βmin, βmax). The minimum and maximum axis lengths depend on a com-
bination of cell type and image size, and are somewhat arbitrary because images
are often downsampled during preprocessing for convenience. In our experiments
below, we fix the θ, α, and β of each cell to π/4, 9, and 6, respectively, for reasons
discussed below.

The collection of variables defined above forms a latent variable catalog z :=
{c, {uj, fj, θj, αj, βj}cj=1}; we will henceforth refer to these catalogs as particles.
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Figure 1: Images from BBBC039 (top) and our Bayesian model (bottom)

(Both 256 × 256 images have a cell count of 102)

Given a particle z, the intensity of the image at pixel (h,w) is xhw | z ∼ Poisson(λhw(z)+
γ), where γ is the constant background fluorescence of the image and λhw(z) =∑c

j=1 fjφ(h,w, z). The function φ(·) is the point-spread function (PSF), a deter-
ministic function that describes the response of the microscope to the impulses
of nearby cells at each pixel. In our simulations, we model the PSF as bivariate
Gaussian convolution kernel, and we set the background fluorescence to 10.

We illustrate the realism of this generative model in Figure 1, where we display
a 256×256 pixel image generated from our full model (including random ellipse
shape parameters) next to a downsampled image of the same size from the BBBC039
data set. We also display 32×32 pixel cutouts from each image to demonstrate
their similarities on a more granular level. Our model is parametric and thus is
unable to capture all the nuances of the BBBC039 cell shapes, but it otherwise
provides a close approximation.

2.2 Sequential Monte Carlo samplers for cell detection

Given an image x = {{xhw}Hh=1}Ww=1, we use a sequential Monte Carlo (SMC)
sampler to characterize the posterior distribution p(z |x) of possible particles (i.e.,
collections of cells) that explain the image. As is typical in the Bayesian regime, we
assume that p(z |x) cannot be sampled from directly due to the intractable normal-
izing constant p(x), but that the unnormalized joint density p(x, z) = p(z)p(x | z)
can be evaluated pointwise. Our SMC sampler uses likelihood tempering to ap-
proximate a sequence of distributions that gradually progresses from the prior p(z)
to the posterior. This sequence takes the form p(z)p(x | z)τt , and it progresses ac-
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cording to a tempering schedule 0 = τ0 < τ1 < · · · < τT = 1. Likelihood-tempered
SMC samplers of this form involve four core procedures: sampling particles from
p(z), mutating them with Markov chain Monte Carlo (MCMC) moves, updating
their weights to track the above sequence of target distributions, and resampling
them to avoid weight degeneracy.

Our sampler involves a methodological trick that renders it a convenient method
for transdimensional inference. As mentioned in section 1, it does not require the
user to define, or subsequently sample from, transdimensional proposals. Instead,
it initializes an equal number of particles with each candidate value of c and pre-
serves the cell count of each particle for the duration of the algorithm. A set of
importance weights is maintained for each “block” of particles that have the same
cell count, and the resampling step of the algorithm is performed within these
blocks using the intra-block weights. The sampler otherwise progresses through
the usual mutation and reweighting stages of SMC, exploring the space of posi-
tions and properties for particles with various cell counts and iteratively assigning
weights to catalogs based on their plausability under the current target. A separate
set of inter-block importance weights is also maintained throughout the algorithm,
and the inter-block weights of the particles returned after the final iteration can
be used to assess the posterior probabilities of different cell counts c.

We formalize this procedure in Algorithm 1. For the mutation step, we use a k-
step random walk Metropolis-Hastings kernel that is invariant under the current
target distribution, as this is the default MCMC kernel recommended for many
SMC samplers. For the tempering and resampling steps, we use typical procedures
suggested in the SMC literature; we refer the reader to [9] for more details.

3 Simulation studies

3.1 Experiment settings

We evaluate the cell detection capabilities of our SMC sampler using 1,000 syn-
thetic images of size 32 pixels by 32 pixels with cell counts ranging uniformly from
zero to four. We generate these images using a simplified version of our Bayesian
model in which the angles and axes of the cells are fixed at the values mentioned
in subsection 2.1. In exploratory runs of our SMC sampler on the full version
of the model, we found that the computational burden of inferring fluorescences,
locations, and cell shapes was prohibitive. We encountered similar computational
constraints when we ran the sampler on larger images with more cells. This is a
limitation of the sampler in its current form. We theorize that this problem could
be alleviated with more complex, component-wise MCMC mutation kernels, as
opposed to the random walk kernel that we used here.

We run our SMC sampler once for each image and record the posterior mean source
count and posterior mean total fluorescence. We compare the performance of our
approach to a popular deterministic cell segmentation pipeline that comprises
two steps: thresholding and the watershed algorithm [10]. We implement this
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Algorithm 1 SMC sampler, stratified by cell count

Input: image x; prior p(z); likelihood p(x | z); MCMC kernel Mτ (z, dz) for τ ∈ [0, 1];
number of blocks B (indexed by b); number of particles per block N (indexed by n);
choice of resampling scheme (e.g., multinomial, stratified, systematic).

Iteration t← −1. Tempering exponent τt ← 0.

while τt < 1 do

t← t+ 1.

if t = 0 then

Particles zbnt ∼ p(z) such that ∀ b, cb1t = · · · = cbNt .

Unnormalized weights wbn
t ← 1.


Initialize

Intra-block normalized weights W̃ bn
t ← 1

N
.

Inter-block normalized weights W bn
t ← 1

BN
.

if t > 0 then

for block b ∈ {1, ..., B} do
Resample N indices {Abn

t }Nn=1 ← resample(N, {wbn
t−1}Nn=1).


Resample

Reset W̃ bn
t−1 ←

1
N

and W bn
t−1 ←

1
N

∑N
n=1 W

bn
t−1.

Mutate zbnt with k-step kernel Mτt−1 (z
Abn

t
t−1 , dz).

}
Mutate

Update τt ← τt−1 + δ, where δ ∈ [0, 1−τt−1].
}

Temper

Update wbn
t ←W bn

t−1p(x | zbnt )τt−τt−1 .

Update W̃ bn
t ← wbn

t /
∑

n wbn
t .


Update weights

Update W bn
t ← wbn

t /
∑

b

∑
n wbn

t .

Output: Weighted particle approximation {{zbnt ,W bn
t }Bb=1}

N
n=1 of p(z | x).

deterministic procedure (which we will henceforth refer to as “watershed”) using
the open-source Python library scikit-image. Our SMC sampler is implemented
in PyTorch, and we ran these experiments on one NVIDIA GPU.1

3.2 Results

Our SMC sampler yields a correct estimate of the true cell count (i.e., posterior
mean count rounded to the nearest integer) in 977 of the 1,000 images (97.7%),
with a mean absolute error of 0.023. The watershed algorithm does not achieve the
same level of accuracy, as it yields a correct estimate in only 613 of the 1,000 images
(61.3%) with a mean absolute error of 0.564. Figure 2 displays the classification
accuracy, calibration, and mean absolute error of the two methods among images
with the same true cell count. We observe that the performance of the watershed
algorithm degrades in more crowded images, while our SMC sampler maintains
strong performance even in images with four cells.

Figure 3 and Figure 4 serve as a sanity check for our SMC sampler. If our al-
gorithm produces high-quality weighted particle approximations of the posterior

1Code is available at https://github.com/timwhite0/smc object detection/tree/cells.
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Figure 2: Accuracy, calibration, and MAE of estimated cell counts

(Error bands are 90% bootstrap percentile intervals)

distribution for a given image, then it should be capable of characterizing the
fluorescences and locations of the cells in that image. Figure 3 demonstrates that
SMC’s reconstructions of our synthetic images provide a close (and noiseless) ap-
proximation to the original images, while Figure 4 illustrates that the sampler’s
estimates of the posterior mean total fluorescence are well calibrated.

4 Discussion

The results of our experiments demonstrate that our SMC sampler is capable of
detecting cells in noisy, pixelated images and inferring a posterior distribution
over their latent properties. However, these experiments involved small images
with a relatively small number of homogeneous cells, and therefore our sampler
would likely require some methodological tweaks to achieve the same performance
on a real data set such as BBBC039. One potential improvement would be to
incorporate Gibbs-like moves into the MCMC kernel in the mutation step, as this
would allow moves to be proposed for each latent property iteratively. Another
improvement would be to scale the algorithm to large images using a tiling scheme
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Figure 3: SMC reconstructions of four example images from our model

(SMC reconstructions are created using the particle with the highest weight)

Figure 4: True total fluorescence vs. posterior mean estimated by SMC

(Each dot represents one of the 1,000 images)

in which the posterior samples from many tiles are combined using product-form
estimators [13]. Finally, it is of interest to apply our SMC algorithm to more
challenging microscopy tasks, such as the detection of malaria-infected cells or
cancerous cervical cells.
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