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Abstract

Diabetes mellitus has consistently ranked among the ten leading causes of death in the United
States for the past several decades. Diabetes-related mortality is prevalent across a wide range
of sociodemographic subpopulations, and many previous studies have attempted to identify
the risk factors and comorbidities that contribute most heavily to this phenomenon. However,
surprisingly little attention has been paid to the distinction between the type 1 and type 2
variants of the disease in the context of mortality. In this report, we fill this gap in the litera-
ture by using unsupervised and supervised statistical learning methods to analyze the mortality
risk profiles of individuals with type 1 and type 2 diabetes. We apply a dimension reduction
technique to multiple-cause-of-death mortality data from the Centers for Disease Control and
Prevention to explore the latent sociodemographic and health profiles of individuals whose
deaths were attributed to diabetes in 2021, and we train several classification models to differ-
entiate between type 1 and type 2 diabetes as a cause of death based on these characteristics.
Our results suggest that sophisticated classification methods are capable of achieving moderate
accuracy in distinguishing deaths due to type 1 diabetes from those due to type 2 diabetes,
with tree-based and optimization-based classifiers such as random forest, AdaBoost, and kernel
SVM providing a better holistic performance than model-based classifiers such as naive Bayes,
quadratic discriminant analysis, and penalized logistic regression. We find that age is the most
useful predictor for this classification task, followed by other sociodemographic predictors such
as education, marital status, race, place of death, and sex. These findings provide important
insights that could potentially improve the ability of practitioners to assess mortality risk in
patients with type 1 and type 2 diabetes.
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1 Introduction

1.1 Background

Diabetes mellitus — a chronic endocrine disorder that hinders the body’s ability to produce and/or use

insulin — has ranked among the ten leading causes of mortality in the United States since the middle

of the 20th century [1, 2]. It was the eighth leading cause in 2021, accounting for three percent of the

country’s deaths [3]. Diabetes-related mortality is prevalent across many sociodemographic groups [4, 5],

which makes it challenging to identify the underlying factors that contribute most heavily to the deaths

of diabetic individuals. Overcoming this challenge is crucial, as the ability of practitioners to accurately

assess mortality risk in people with diabetes could greatly improve the care they provide to these patients.

One important consideration in any study involving diabetes is the distinction between the two main types

of the disease. As explained by Ozougwu et al. [6], type 1 diabetes is characterized by a lack of sufficient

insulin production, which is caused by an autoimmune attack on pancreatic cells. The onset of type 1

diabetes typically occurs before the age of 20, and hence this variant of the disease has long been referred

to as juvenile diabetes. In contrast, type 2 diabetes is usually diagnosed after the age of 30, and thus

it is occasionally referred to as adult-onset diabetes. Type 2 diabetes is characterized by reduced insulin

sensitivity — the pancreas can still produce insulin, but the body is resistant to it. Type 2 diabetes is

much more common than type 1, as it accounts for approximately 90% of all cases of diabetes in the United

States [6]. It is also much more common than gestational diabetes (i.e., diabetes during pregnancy), which

is sometimes regarded as a third major type of diabetes but which is not considered in this report since it

affects such a narrow demographic subpopulation.

Previous studies of diabetes-related mortality have concentrated on the disease’s interaction with comor-

bidities like cardiovascular disease [7] and COVID-19 [8]. While these analyses provide important insights

about the associations between diabetes and other causes of death, many of them fail to address the impact

of the potentially stark sociodemographic and health-related differences between individuals with type 1

diabetes and those with type 2 diabetes. Some studies investigate just one of the two types [9, 10], while

others treat the patient populations for the two types as one homogeneous group [4, 5]. In this report, we

fill in the gaps of these prior studies by focusing on the distinction between type 1 and type 2 diabetes in

the context of mortality. We use multiple-cause-of-death mortality data from the Centers for Disease Con-

trol and Prevention (CDC) [11] to predict whether individuals whose deaths were attributed to diabetes

in 2021 suffered from the type 1 variant or the type 2 variant of the disease. We train several different

classification models to make these predictions based on the decedents’ demographic characteristics and

underlying health conditions, and in doing so we aim to compare the mortality risk profiles of individuals

across the two types of diabetes.

1.2 Guiding questions

The analysis in this report is centered around the following three questions:

1. How accurately can sophisticated classification methods distinguish between type 1 and
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type 2 diabetes as a cause of death based on individuals’ sociodemographic character-

istics and underlying health conditions?

2. Are there substantial differences in predictive accuracy for this task between model-

based, tree-based, and optimization-based classifiers? Which methods achieve the best

holistic classification performance?

3. Which sociodemographic and health characteristics are the most useful predictors for

distinguishing deaths due to type 1 diabetes from those due to type 2 diabetes?

Our approach to these answering these questions follows two distinct but related tracks. The first track

involves unsupervised learning — we examine the social, demographic, and health profiles of those with

type 1 and type 2 diabetes and use a dimension reduction technique to construct latent representations of

these characteristics. The second track takes a supervised approach — we train six different classification

methods to distinguish between deaths due to type 1 and type 2 diabetes, and we evaluate the performance

of the resulting models using several different metrics. We implement this classification workflow twice —

once using the original predictors from the CDC data set and once using the latent features mentioned

above. This allows us to assess whether the latent predictors yield a similar (or perhaps higher) level of

classification accuracy compared to the original features.

1.3 Outline

The remainder of this report is organized as follows. In Subsection 2.1, we describe how we assembled the

CDC mortality data into a suitable data frame for dimension reduction and classification, with a particular

focus on our construction of relevant predictors for the binary response variable type1diabetes and our

use of synthetic minority oversampling (SMOTE) and random majority undersampling to handle class

imbalance in this response variable. In Subsection 2.2, we apply logistic principal component analysis to

the data and explore the latent space of our categorical predictors by interpreting the loadings and principal

component scores. In Subsection 2.3, we introduce six different methods for classifying type1diabetes.

We train these methods once using the original features and once using the principal components, and in

Section 3 we report the classification performance of both sets of models on unseen test observations in

terms of their accuracy, sensitivity, specificity, area under the receiver operating characteristic curve (AUC),

and Brier score. Finally, we conclude in Section 4 by summarizing our main contributions, discussing the

limitations of our analysis, and proposing potential remedies for these limitations.

2 Methods

2.1 Data preprocessing

The CDC multiple-cause mortality data set contains nearly 3.5 million death records for 2021 [11]. Of these

3.5 million deaths, just 46,206 have a primary International Statistical Classification of Diseases (ICD-10)

code of E10 (type 1 diabetes mellitus) or E11 (type 2 diabetes mellitus) [12]. Another 57,218 deaths are

attributed to diabetes mellitus but do not distinguish between type 1 and type 2, and hence these records
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are unusable for the purposes of this report. Many other records list gestational diabetes as the primary

cause of death or cite diabetes as an underlying but non-primary cause, but we do not consider these cases

in our analysis. We claim that focusing on deaths for which type 1 or type 2 diabetes is listed as the

primary cause is a reasonable approach to assessing mortality risk across the two types, and the number

of records that satisfy this criterion is more than sufficient for a robust analysis.

We construct a binary variable called type1diabetes based on the ICD-10 codes mentioned above — it

takes a value of one for individuals whose primary cause of death is type 1 diabetes and a value of zero for

those whose death is attributed to type 2 diabetes. This variable plays a critical role in both tracks of our

analysis — for dimension reduction we examine the distributions of our latent predictors across the two

classes of type1diabetes, and for classification we use it as our response variable.

We also construct ten categorical variables that serve as our observed features for dimension reduction

and our predictors for classification: age, sex, race, education, marital status, place of death,

cholesterol, covid, hypertension, and obesity. The levels of the first six of these variables are listed

in Figure 1. The latter four features are binary variables that indicate whether high cholesterol (ICD-10

code E78), COVID-19 (U071), hypertension (I10-I15), and obesity (E66) were listed among an individual’s

first six record-axis conditions (i.e., underlying health conditions). These four diseases are known to be

comorbidities of diabetes [8, 13, 14], so it is reasonable to infer that they carry useful information for

predicting type1diabetes. Note that the CDC reports up to 20 record-axis conditions for each deceased

individual, but we focus only on the second through the seventh of these because the remaining record-axis

conditions are missing for more than 95% of cases in the data set.

After filtering out records containing missing values for at least one of the above variables, we obtain a

data set with 45,129 observations of type1diabetes and our ten predictors. However, as mentioned in

Subsection 1.1, we encounter a problem of class imbalance: only 4,165 of these deaths are attributed to type

1 diabetes, while the remaining 40,964 are attributed to type 2. It is well-documented that classification

models tend to perform poorly when the class distribution of the response variable is heavily skewed —

learning algorithms tend to prioritize the majority class and ignore the minority class in this setting [15].

In our context, for instance, we could achieve roughly 90% classification accuracy by constructing a naive

model that classifies all of the records as type 2 and none of the records as type 1. More sophisticated

classification methods — including those considered in this report — tend to mimic this behavior in the

presence of class imbalance, and hence they produce models that are not particularly useful.

To address the issue of the imbalanced classes in type1diabetes, we employ Chawla et al.’s synthetic

minority oversampling technique (SMOTE) [16]. This approach generates synthetic data from the minority

class by randomly combining the k nearest neighbors of each minority observation. We use SMOTE with

k = 5 to double the size of our minority class from 4,165 to 8,330 — for each death attributed to type

1 diabetes, we generate one additional synthetic observation. In addition, we randomly undersample the

majority class without replacement to achieve perfect balance between the two classes of type1diabetes

— i.e., we reduce the number of deaths attributed to type 2 diabetes from 40,964 to 8,330. Thus, we

obtain a balanced, semi-synthetic data set of 16,660 observations after SMOTE and random majority
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Figure 1: Distribution of predictors by class after SMOTE and random majority undersampling

(a) Age (b) Sex (c) Race

(d) Education (e) Marital status

(f) Place of death (g) Number of underlying conditions

undersampling. This is the data set that we will use for dimension reduction and classification. We find

that SMOTE works as advertised, as we verified that the class-specific distributions of the predictors in

the SMOTED data set provide a close approximation to those in the un-SMOTED data set.

In Figure 1, we visualize the distributions of the predictors in the SMOTED data set. Note that in panel

(g), we convert the indicator variables cholesterol, covid, hypertension, and obesity into a single

numeric variable by computing their sum.

2.2 Dimension reduction

In Figure 1, we observe several prominent differences in the distributions of the predictors between indi-

viduals who died from type 1 diabetes and those who died from type 2 diabetes. Those who died from

type 1 diabetes appear to younger and more educated on average, with fewer of the four comorbidities

that contribute to the graph in panel (g). Individuals in the type 2 class appear to be more likely to be

widowed and die in a nursing home, while those in the type 1 class are more likely to be single and die in

their own home. These differences suggest that the original features in our data set carry at least some

predictive power for the task of classifying type1diabetes.

However, it is possible that we could describe a similar amount of sociodemographic and health-related
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Table 1: Loadings of the first three principal components

Loading 1 Loading 2 Loading 3
Place of death: Other 0.415 Marital status: Married 0.497 Place of death: Nursing home 0.443

Place of death: Nursing home 0.387 Sex: Male 0.486 Sex: Male 0.152
Hypertension: Yes 0.232 Hypertension: Yes 0.188 Age: Thirties 0.097

Education: Graduate 0.208 Education: Graduate 0.174 Marital status: Married 0.082
Marital status: Widowed 0.189 Race: Asian 0.114 Education: High school 0.074

Place of death: Home -0.508 Marital status: Widowed -0.395 Hypertension: Yes -0.750
Education: High school -0.335 Marital status: Divorced -0.360 High cholesterol: Yes -0.324

Sex: Male -0.318 Education: High school -0.304 Place of death: Home -0.241
Age: Forties -0.155 Place of death: Home -0.072 Marital status: Widowed -0.115
Age: Thirties -0.105 Age: Seventies -0.058 Age: Seventies -0.064

variation in the predictor space with a smaller number of latent representations of the original features.

This is the concept that motivates data reduction techniques such as principal component analysis (PCA),

which aims to identify a low-dimensional encoding of the original predictors that captures a considerable

proportion of the variation of the observed data. We cannot directly apply the traditional version of PCA

to our data since all of our predictors are categorical, as PCA assumes that the observed variables follow

a continuous distribution. Fortunately, there exist extensions of PCA to binary data — instead of finding

the low-dimensional latent representation that maximizes the deviance of some continuous distribution

(e.g., Gaussian), we aim to maximize the Bernoulli deviance.

After encoding our ten categorical predictors as 27 dummy variables, we implement PCA on these binary

features using the logisticPCA package in R [17]. We select 12 principal components, which is the smallest

number of components that explains at least 95% of the deviance of the observed data. Table 1 reports

the five largest and five smallest loadings of each of the first three principal components — these are the

weights that describe the contributions of the original predictors to the latent components. Figure 2 plots

the distribution of scores for each pair of the first three principal components, with the scores labeled by

the two classes of type1diabetes.

For the first principal component, positive loadings seem to capture characteristics that are more associated

with type 2 diabetes, while negative loadings seem to correspond to type 1 diabetes. In particular, the

first principal component appears to separate deaths that occurred in the decedent’s home from those that

occurred in nursing homes or elsewhere, which is one of the differences between the two classes that we

observed in Figure 1. This interpretation is also borne out in panel (a) of Figure 2, as we observe that

the orange ellipse corresponding to type 1 diabetes is shifted slightly in the negative direction of the first

principal component compared to the navy type 2 ellipse.

The second principal component captures variation in marital status and education — positive loadings

correspond to married individuals with a graduate education, while negative loadings correspond to wid-

owed and divorced individuals with a high school education. The third component seems to be based

primarily on hypertension and cholesterol, although it also captures discrepancies in place of death, sex,

marital status, and age. It appears that the second and third principal components draw less of a distinc-

tion between the two classes of type1diabetes — in Figure 2, the orange and navy ellipses overlap almost

entirely in the second and third principal component directions.
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Figure 2: Scores for the first three principal components, labeled by type of diabetes
*Orange and navy ellipses are 80% confidence bivariate Gaussian ellipses)

(a) PC1 vs. PC2 (b) PC1 vs. PC3 (c) PC2 vs. PC3

Note that Table 1 and Figure 2 involve only the first three principal components, which is far fewer than

the twelve components that we will use to train the classifiers described below. That being said, the first

three principal components appear to establish very little separation between deaths due to type 1 and

type 2 diabetes, which casts doubt on whether using these latent representations as predictors will lead to

comparable accuracy in classifying type1diabetes as the original features themselves.

2.3 Classification

Recall that our balanced data set contains 16,660 observations of ten categorical predictors and the binary

response variable type1diabetes. We construct a second version of this data set in which we replace the

ten original features (which can be encoded as 27 dummy variables) with the 12 principal components from

Subsection 2.2. We divide each version of the data set into a training set of 13,328 observations (80%) and

a test set of 3,332 observations (20%), using the same random split for both versions.

We consider six different methods for classifying type1diabetes. Three of these classifiers are model-

based (naive Bayes, quadratic discriminant analysis, and penalized logistic regression), two are tree-based

(random forest and AdaBoost), and one is optimization-based (kernel SVM). None of these three families

of classifiers is obviously better suited for our classification task than the others — if such an advantage

exists, we hope to uncover it in our evaluation of these models. Below, we briefly summarize our approach

to fitting these six methods on each version of the training set.

2.3.1 Naive Bayes

The first of the model-based classifiers is naive Bayes [18], a generative approach that requires no parameter

tuning and imposes two simplifying assumptions on the predictors: (i) they are conditionally independent

given the response variable, and (ii) their marginal distributions are categorical. Naive Bayes is well-suited

for the original features from the CDC data set, which are all categorical. However, it can be extended in a

fairly straightforward manner to accommodate continuous predictors — we simply assume a multivariate

Gaussian marginal distribution for the predictors instead of a categorical distribution. We use the classical
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version of naive Bayes to train a model using the original features, and we use the Gaussian extension to

fit a model on the principal components.

2.3.2 Quadratic discriminant analysis

Quadratic discriminant analysis (QDA) [19] is another generative approach to model-based classification

that is very similar to the Gaussian extension of naive Bayes. In fact, QDA can be viewed as a generalization

of Gaussian naive Bayes — the only difference between the two methods is that QDA drops the conditional

independence assumption on the predictors. Specifically, it models the conditional distribution of the

predictors given the response variable as multivariate Gaussian with some mean and (potentially non-

diagonal) covariance matrix, both of which are allowed to vary across the classes of the response variable.

There are two key remarks to be made about QDA in the context of our classification task. First, since

QDA imposes a Gaussian assumption on the predictors, we cannot apply it to the version of our data set

that contains the original categorical features. Second, since QDA and Gaussian naive Bayes differ only by

a conditional independence assumption on the predictors, we can assess the plausibility of this assumption

for the principal components by comparing the classification performances of the two methods. We circle

back to this remark in Subsection 3.2.

2.3.3 Penalized logistic regression with elastic net regularization

The third model-based classification method we consider is penalized logistic regression with elastic net

regularization [20]. For simplicity, we refer to this classifier as “elastic net” in Table 2 and Figure 4. Unlike

naive Bayes and QDA, penalized logistic regression is a discriminative approach that directly models

the conditional distribution of the response variable given the predictors without explicitly specifying

the marginal distribution of the predictors. Penalized logistic regression also differs from the previous

two model-based classifiers in that it requires parameter tuning. We use 10-fold cross-validation on each

version of the training set to tune the shrinkage parameter λ and the LASSO-ridge mixing parameter α.

We obtain optimal values (λ̂ = 0.0005, α̂ = 0.9) and (λ̃ = 0.0856, α̃ = 0.1), respectively, for the version

with the original features and the version with the principal components.

2.3.4 Random forest

We now consider two tree-based models that offer a flexible alternative to model-based classification. The

first of these tree-based classifiers is random forest [21], an extension of bagging that grows (and ultimately

aggregates) a large number of decision trees on bootstrapped versions of the training data while considering

a limited number of predictors m at each split. Limiting the number of predictors considered at each split

reduce the correlation between the trees and tends to yield classifiers with lower variance, but it also

introduces a tuning parameter. We use 10-fold cross-validation to tune m on each version of the training

set. We obtain optimal values of m̂ = 3 for the version with the original features and m̃ = 9 for the version

with the principal components.
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2.3.5 AdaBoost

The second tree-based method we consider is AdaBoost [22], a boosting algorithm that fits a sequence of

so-called weak classifiers on iteratively reweighted versions of the data and outputs a weighted combination

of the predictions of these weak classifiers. Boosting algorithms like AdaBoost are known to be well-suited

for classifying difficult training examples that lie close to the decision boundary [23]. As such, we expect

AdaBoost to perform relatively well on the principal component version of our data set, as we observed a

substantial amount of overlap between the classes of type1diabetes in Figure 2. We run 200 iterations

of AdaBoost on each version of the training set, growing each tree to a maximum depth of 30 nodes and

pruning it with a cost-complexity parameter of 1e-6.

2.3.6 Kernel SVM

The final method we consider is a support vector machine (SVM) with a radial basis kernel [24]. Kernel

SVM solves a constrained optimization problem — it projects the observed data onto a reproducing kernel

Hilbert space and attempts to separate the classes of the response variable in this higher-dimensional space

by maximizing the margin around the decision boundary. Kernel SVM is predominantly used in settings

with continuous predictors, so it is arguably more suitable for the principal component version of our data

set than the version with the original categorical features. However, we find that the method achieves a

relatively strong classification performance using the categorical features if we encode these predictors as

dummy variables. As such, we apply kernel SVM to both versions of the training set and report both sets

of results in Section 3. We use 10-fold cross-validation on each version of the training set to tune the cost

parameter, which controls the amount of constraint violation that is allowed when maximizing the margin.

We obtain optimal cost values of 100 and 10, respectively, for the version with the original features and

the version with the principal components.

3 Results

After fitting the classifiers from Subsection 2.3 on both versions of the training data, we evaluate their

classification performances by using them to predict type1diabetes on the corresponding version of the

test set. To ensure a comprehensive assessment of these methods, we consider five different performance

metrics. Classification accuracy is just the proportion of test cases for which the cause of death (type 1

or type 2 diabetes) is correctly identified, assuming the usual decision threshold of 0.5. Sensitivity is the

proportion of correctly identified type 1 deaths, while specificity is the proportion of correctly identified type

2 deaths. Area under the ROC curve (AUC) holistically evaluates classification accuracy across a range

of decision thresholds between zero and one — a ROC curve plots the false positive rate (1 - specificity)

against the true positive rate (sensitivity) at each threshold, and AUC is just the area under this curve.

Finally, Brier scores provide a more direct evaluation of the probabilistic predictions of our classification

models — a lower Brier score indicates higher accuracy, and vice versa [25]. This metric is computed as

1
N

∑N
i=1(yi − p̂i)

2, where N is the number of observations in the test set, yi ∈ {0, 1} is the actual value of

type1diabetes for the ith test observation, and p̂i is the predicted probability of a type 1 death for the
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Table 2: Performance of classifiers trained on original features and principal components
*Underline identifies the best-performing method(s) for each metric

Original features Principal components

Accuracy Sens. Spec. AUC Brier Accuracy Sens. Spec. AUC Brier

Naive Bayes 0.672 0.640 0.704 0.745 0.206 0.654 0.674 0.635 0.714 0.217

QDA — — — — — 0.667 0.667 0.667 0.725 0.219

Elastic net 0.688 0.646 0.729 0.750 0.201 0.630 0.731 0.531 0.704 0.225

Random forest 0.709 0.674 0.743 0.784 0.202 0.697 0.686 0.707 0.761 0.221

AdaBoost 0.695 0.705 0.686 0.769 0.201 0.694 0.702 0.687 0.766 0.200

Kernel SVM 0.703 0.641 0.762 0.766 0.198 0.700 0.694 0.707 0.758 0.199

ith test observation. Table 2 reports these five performance metrics for both sets of classification models

— those trained on the original features and those trained on the principal components.

3.1 Classification using original features

We first examine the performance of the classifiers trained on the original categorical predictors. The five

methods perform similarly overall, although random forest, AdaBoost, and kernel SVM hold a slight

advantage over naive Bayes and elastic net across all five metrics. Random forest achieves the highest

accuracy and AUC, kernel SVM achieves the lowest Brier score and highest specificity, and AdaBoost

achieves the highest sensitivity. The weaker performance of the model-based classifiers relative to the

tree-based and optimization-based methods suggests that the assumptions imposed by naive Bayes and

logistic regression may not hold for the CDC mortality data. In particular, the naive Bayes assumption

of conditionally independent predictors is potentially suspect — there may be a nontrivial amount of

association in each class between at least some of the predictors.

Recall the third guiding question from Subsection 1.2 — it is of interest to know which of the features in

our data set carry the most predictive information for distinguishing deaths due to type 1 diabetes from

those due to type 2 diabetes. To address this objective, we extract variable importance scores from the

tree-based classifiers trained on the original features. Figure 3 reports the relative importance of the ten

categorical predictors according to random forest and AdaBoost. These relative importance scores reflect

the average change in the Gini index when a particular variable is added or removed from a tree. We

standardize these two sets of variable importance scores so that they fall between 0 and 100, and we find

that the two sets of rankings generally agree with one another. In particular, the tree-based methods

suggest that age is by far the most important predictor for classifying type1diabetes, followed in some

order by education, marital status, race, and place of death. The four comorbidities are found to

carry the least amount of predictive information about mortality among individuals with diabetes.

3.2 Classification using principal components

We now turn our attention to the classifiers trained on the principal components. We observe essentially

the same trends described in Subsection 3.1, as random forest, AdaBoost, and kernel SVM generally
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Figure 3: Relative importance of original predictors according to random forest and AdaBoost

perform better across the five metrics than the model-based classifiers. Interestingly, the elastic net model

achieves the highest sensitivity of the six methods, but its specificity is almost as low as that of a random

classifier. This result is a bit puzzling, particularly because we found that it holds for a wide range of

values of the elastic net shrinkage and mixing parameters. Elsewhere among the model-based classifiers, we

find that QDA performs slightly better than Gaussian naive Bayes across almost all of the metrics. Recall

from Subsubsection 2.3.2 that these two methods differ only by the naive Bayes assumption of conditional

independence among the predictors. Thus, our results indicate that this assumption may not hold for the

principal component version of the data set.

Arguably the most notable takeaway regarding the classifiers trained on the principal components is that

they do not perform as strongly as the models that use the original features. Our findings suggest that

using the principal components as predictors yields slightly worse classification performance across all five

metrics compared to the models trained on the original features. The exception to this is AdaBoost, which

performs almost exactly the same with the principal components as it does with the original features; this

is consistent with our hypothesis from Subsubsection 2.3.5. We visualize the differences in performance

between the two sets of models in Figure 4 by plotting the ROC curves for both versions of each classifier.

The slight advantage of random forest, AdaBoost, and kernel SVM over the model-based classifiers is

visually apparent in this figure, as the ROC curves in panels (d)-(f) adhere more closely to the best ROC

curve (achieved by random forest using the original predictors) than those in panels (a)-(c).

4 Discussion

4.1 Summary of main contributions

In this report, we have applied a variety of unsupervised and supervised statistical learning methods to

CDC multiple-cause mortality data from 2021 with the objective of assessing the determinants of mortality
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Figure 4: ROC curves for the six classifiers using original features and principal components
*Black dashed line is the best ROC curve (achieved by random forest on original predictors)

(a) Naive Bayes (b) QDA (PCs only) (c) Elastic net

(d) Random forest (e) AdaBoost (f) Kernel SVM

among individuals with type 1 and type 2 diabetes. We used dimension reduction and classification

techniques to address the three guiding questions laid out in Subsection 1.2 — i.e., we examined (1) the

accuracy with which classification methods can distinguish between type 1 and type 2 diabetes as a cause

of death, (2) the similarities and differences in predictive performance between model-based, tree-based,

and optimization-based classifiers, and (3) the sociodemographic and health characteristics that play the

most important roles in separating the two classes of the response variable type1diabetes. By focusing

on the often overlooked distinction between type 1 and type 2 diabetes, we have expanded upon previous

studies and contributed new insights about the mortality risk profiles of diabetic individuals.

Our results suggest that distinguishing between deaths attributed to type 1 and type 2 diabetes is a difficult

task, as even the best-performing methods in Section 3 misclassify roughly three out of ten cases. The

challenges encountered by these classifiers are not too surprising, as we observed a nontrivial amount of

class overlap in the predictor space for both the original features (Figure 1) and the principal components

(Figure 2). However, all of the classifiers considered in this report would outperform a random classifier

(i.e., one that achieves 50% accuracy) by a considerable margin. As such, our findings indicate that

sophisticated classification methods can distinguish between type 1 and type 2 diabetic mortality with

moderate accuracy based on individuals’ sociodemographic and health profiles.

The six classification methods considered in this report achieve similar performance overall, although
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random forest, AdaBoost, and kernel SVM outperform naive Bayes, QDA, and penalized logistic regres-

sion by a slight margin in terms of their accuracy, sensitivity, specificity, AUC, and Brier score. This

advantage holds for both sets of models constructed in Section 2 — those trained on the original cate-

gorical features and those that use the principal components. These findings suggest that tree-based and

optimization-based classifiers are better equipped to predict type1diabetes than model-based classifiers.

We hypothesize that the shortcomings of the model-based classifiers may arise because the distributional

assumptions that they impose on the predictors and the response do not hold for the CDC mortality data.

Finally, regarding the third guiding question from Subsection 1.2, we find that age seems to be the most

useful predictor for the task of differentiating deaths due to type 1 and type 2 diabetes. Age dominates the

other predictors in the tree-based classifiers trained on the original features (Figure 3), and it is also an

important contributor to the loadings of the first three principal components (Table 1). Sociodemographic

characteristics like education, marital status, race, place of death, and sex are also important contributors

to the tree-based classifiers and the first few principal components, while underlying health conditions like

high cholesterol, COVID-19, hypertension, and obesity seem to wield little predictive power that is not

already captured by the other features.

4.2 Limitations and potential remedies

While the analysis presented in this report addresses all of our stated objectives, it is not without its

shortcomings. One such limitation is the large number of unlabeled diabetes-related deaths in the CDC

mortality data set. As mentioned in Subsection 2.1, we found it necessary to omit the nearly 60,000

diabetes-related deaths in this data set that do not specify whether the individual died from the type 1

or type 2 variants of the disease. We could have doubled our sample size and enriched the predictor space

by including these cases in our analysis, but unfortunately the lack of a specified type for these records

renders them useless for supervised learning. One could utilize missing value imputation techniques to

handle these unlabeled records [26], but this is a potentially risky strategy since the number of unlabeled

cases in the data set is greater than the number of labeled cases. Alternatively, one could incorporate past

years of CDC mortality data to bolster the number of labeled records [11]. This would be particularly

helpful because it would provide more training examples for the minority class of type 1 deaths.

A second hurdle that we encountered in our analysis is the absence of more detailed medical information in

the CDC data set. It is unrealistic to expect individual health records to be included in a public use data

set, but this information would be invaluable for the dimension reduction and classification tasks in this

report. In particular, measures of glycemic variability such as hemoglobin A1C (HbA1C) are known to be

strong predictors of mortality among individuals with type 1 and type 2 diabetes [7, 27], and there tends to

be greater variability in these indicators among those with type 1 diabetes than those with type 2 diabetes

[28]. We infer that including these diabetes-specific indicators as features in our data set would greatly

improve the predictive performance of our classification models. Future analyses that aim to predict type

1 and type 2 diabetic mortality would likely benefit from merging the CDC mortality data with other data

sources such as electronic health records.
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