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1 Introduction

1.1 Background
Creativity is a fundamental but ambiguous concept in the visual arts. It has been demonstrated that there
is an association between the perceived creativity of a work of art and its overall quality [Hag+12; PLT17],
but the underlying factors that shape individuals’ perceptions of creativity are not well-established. This
discrepancy is the central focus of a recent article published in Nature’s Scientific Reports, in which Spee
et al. attempt to identify the perceived attributes of a work of art — e.g., color, symbolism, emotion —
that contribute most heavily to individuals’ assessments of its creativity [Spe+23].

Spee et al. conducted a study in which 78 non-experts were asked to rate 54 paintings according to 17
different attributes, each on a 100-point scale. The participants were also asked to judge the creativity
of each painting on the same 100-point scale. The authors trained a random forest regression model to
analyze these data, emphasizing that this approach is well-suited for capturing the nonlinear relationships
that are thought to exist between creativity and the selected attributes [Mar+16; VW20]. Their results
support this hypothesis of nonlinearity and suggest that symbolism, emotionality, and imaginativeness
are the most prominent predictors of creativity in Western paintings. In this report, we evaluate the
reproducibility and replicability of Spee et al.’s work.

1.2 Objectives and outline
Our analysis is guided by the following three questions:

1. Can we reproduce Spee et al.’s results using their published data and the procedures outlined in
their article?

2. What methodological decisions, omissions, or ambiguities may have affected the authors’
findings or our ability to reproduce them?

3. How robust are the authors’ conclusions? Can we replicate their findings if we alter a few of their
decisions and assumptions?

In section 2, we outline Spee et al.’s study procedure and data set in greater detail, and we successfully
reproduce several of their exploratory plots. Section 3 constitutes the bulk of our reproduction efforts
— we describe and implement the authors’ random forest algorithm, which involves cross-validation
for hyperparameter tuning and permutation testing for assessing variable importance. We obtain results
that are very similar to the authors’ with respect to mean absolute error and variable importance, and we
reproduce their partial dependence plots. In section 4, we theorize that the authors did not adequately
account for variation in creativity judgments across individuals or across painting styles. We implement
two alternative approaches that account for these additional variables, and we compare the results to the
authors’ original findings. Finally, we conclude in section 5 by discussing the limitations and ramifications
of our efforts. We reflect on what our analysis says not only about Spee et al.’s research on creativity,
but also about reproducible and replicable research.

2 Study description and data

2.1 Study procedure
Spee et al. recruited a sample of 78 psychology students from the University of Vienna to participate
in their study. The authors recorded the sex, age, and education of each participant, and they also had
them complete a questionnaire to gauge their interest, knowledge, and experience in art [Spe+20]. These
characteristics were published in a Figshare repository along with the data collected during the study
[Spe+22], and we were able to verify the sample statistics reported by the authors. Approximately 70
percent of the participants were female, and their ages ranged from 19 to 35 (mean = 24.23, sd = 3.45).
Their average art knowledge on a scale from 0 to 36 was 7.03 (sd = 3.75), and their average art interest
on a scale from 7 to 71 was 40.00 (sd = 13.91). The authors only used this information to verify that the
participants were so-called art novices, and they did not incorporate it into their analysis in any other
way. This is likely defensible, as the data provide little evidence that any of the demographic traits or
questionnaire answers were strongly associated with individuals’ creativity judgments.
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Figure 1: Sample distributions of standardized response (creativity judgment) and attributes
(Corresponds to Figure S5 in supplement of [Spe+23]; black line indicates median)

Each participant was shown images of the same set of 54 paintings in a random order. These paintings
varied in both style (representative, impressionistic, and abstract) and genre (portrait, landscape, and still
life), with an equal number of paintings in each of these categories. However, the columns corresponding
to genre were empty in the authors’ data set, so we were unable to consider this information in
our analysis. The participants were asked to rate each painting according to 17 different attributes
(see section 2.2) by dragging a slider along a bipolar 100-point scale for each attribute (e.g., for the
“emotionality” attribute, the two poles of the scale were “emotionless” and “emotionally loaded”). They
were also asked to rate the creativity of each painting on the same 100-point scale. A total of 4,206 sets
of creativity judgments and attribute ratings were recorded — 54 for each of the 78 participants, with
six observations missing due to recording errors.

2.2 Exploratory data analysis
The authors did not make their code publicly available, but they published their data in a Figshare
repository [Spe+22]. Their data set contains 4,206 observations of the response variable creativity
judgment and the 17 predictor attributes, which are listed in Figure 1 and Figure 2. Here, we examine
these attributes by reproducing several figures shared by the authors in the supplement of their article.

Figure 1 is our replica of Figure S5 in the authors’ supplement, and we find that it matches the authors’
figure almost exactly. It depicts the sample distributions of the response and the attributes, after
standardization. We observe that several attributes have bimodal distributions. This suggests that
many participants may have treated the attribute rating process similarly to a binary classification task
— instead of calibrating their ratings across the full 100-point scale, they tended to drag the slider from
the middle of the scale toward one of the poles by a consistent magnitude. This phenomenon was not
mentioned by the authors, and it is not clear if or how it may have affected their results.

In Figure 2 (which is the authors’ Figure S3), we examine the correlations between the attributes, as well
as their correlations with the response. We observe relatively strong positive correlations between several
attributes, such as abstraction, symbolism, realism imaginative, and visual harmony. We theorize
that the participants may have struggled to distinguish between these more conceptual attributes.

Given this relatively large collection of attributes, one might suggest using principal component analysis
(PCA) to construct a smaller set of predictors that retain much of the information in Figure 1 and
Figure 2. Spee et al. implemented PCA on the correlation matrix, and they reported the proportion
of variance explained by each principal component in Figure S4 of their supplement. We have exactly
reproduced their PCA results in Figure 3. This figure suggests that it would be reasonable to proceed
with the first four principal components — this is where the elbow falls in the left panel, and these
four components explain roughly 60 percent of the total variance in creativity judgments. However, the
authors instead emphasize that all but one of the components are necessary to explain more than 99
percent of the variance, and thus they decide to use the original predictors. This is a fair decision, but
it does not necessarily justify their initial use of PCA.

We claim that PCA reveals additional insights about Spee et al.’s data set that the authors either failed
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Figure 2: Correlation heatmap for creativity judgment and attributes
(Corresponds to Figure S3 in supplement of [Spe+23])

to explore or failed to report. In Figure 4, we plot the scores for the first two principal components
and label the points (each corresponding to one participant’s rating of one painting) by their creativity
judgment and style. The left panel indicates that the first two components stratify ratings by their
creativity – higher creativity ratings tend to correspond to lower scores in the first PC direction. The
right panel illustrates that the first two components also separate ratings for paintings of different styles.
Viewed together, these two plots suggest that style may explain a nonnegligible amount of the total
variance of creativity judgment, as the patterns of separation in the two panels are very similar. This
is notable because Spee et al. did not include style as a predictor in their random forest algorithm;
they seemingly used it only to ensure that they considered a variety of artwork styles in their study. We
will return to this potentially overlooked source of variability in section 4.

3 Reproduction of main findings

3.1 Algorithm
Spee et al. synthesize their procedure in the “machine learning based data analysis approach” section
of their article [Spe+23]. They list the software version used for the analysis and the art attributes
that serve as their predictors, and then they justify their use of random forests and provide a detailed
description of the steps they took in their analysis.

The authors train a random forest regression model to predict creativity judgment based on the 17
attributes introduced in the previous section. They view this as a favorable method due to its robustness
against multicollinearity, efficiency, and ability to capture interactions and nonlinear associations. However,
the authors do not provide sufficient explanation for some of the design choices underlying their training
procedure. We claim that there is significant undisclosed flexibility in their approach, especially regarding
hyperparameter tuning. Their procedure is outlined in Algorithm 1.

The main loop consists of four steps. First, the data set is randomly split into train (80%) and test (20%)
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Figure 3: Proportion of variance in creativity judgment explained by principal components
(Corresponds to Figure S4 in supplement of [Spe+23])

Figure 4: Scores for the first two principal components, labeled by creativity judgment and style

sets. Second, hyperparameter selection is conducted on the (scaled) train set using nested cross-validation
and a probabilistic approach to parameter search called Bayesian model optimization (BMO). Next, with
the optimal hyperparameter setting determined by the previous step, a regression forest is refitted on
the whole training set. Finally, measures of goodness of fit are computed, and using this model as a
baseline, permutation tests are performed on both the response and the predictors to assess the statistical
significance of the goodness of fit and variable importance, respectively.

Regular cross-validation uses the same data to tune and select model parameters and evaluate model
performance. This introduces bias into the procedure and may yield a model that overfits the data
[CT10]. Nested cross-validation offers a more rigorous approach for hyperparameter tuning, at the cost
of additional computation. It is designed to tune model parameters and evaluate model performance on
different data — it uses an inner loop to fit a model to each training set and select hyperparameters over
the validation set, and the estimation of generalization error occurs in the outer loop.

Regarding hyperparameter search, traditional grid search procedures can be computationally expensive
and may not always converge to the best set of parameters, especially when dimensionality is high.
This is where methods like Bayesian model optimization (BMO) [MM91] come into play, which offer
a probabilistic approach to hyperparameter tuning. The authors use a Bayesian update procedure for
an underlying Gaussian process by iteratively maximizing an objective function. This can speed up
computation since it does not require searching over the whole hyperparameter space.

Finally, before the end of each outer loop, the model is assessed on the respective test set. The goodness
of fit is measured with (1) the prediction coefficient of determination (prediction R2), and (2) the mean
absolute error (MAE). To assess statistical significance, the model is refitted using the same train set,
but with the response values shuffled across data instances. This procedure is repeated multiple times,
and the model’s goodness of fit is deemed significant if, under the null hypothesis (that there is no
association between the response and predictors, so the obtained metric appeared by chance), no more
than 5% of the metrics obtained with the shuffled data are more extreme than the one obtained with the
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Algorithm 1 Random forest with hyperparameter tuning & permutation tests for variable importance [Spe+23]

Input: n_outer, n_inner, n_permute, proposed_points (parameter for BMO)

for i in 1:n_outer do
Train, Test ← split(data, split_ratio)
Train_mean = mean(Train)
Train_sd = sd(Train)
Train = scale(Train)
Test = scale(Test, mean=Train_mean, sd=Train_sd)

BPP ← BMO(Train, n_inner, proposed_points, split_ratio) ▷ BMO: Bayesian Model Optimization

Fit a random forest with BPP on Train ▷ BPP: Best Performing Parameters

Measure prediction performance on Test

Permutation test for goodness of fit with n_permute shufflings

for j in 1:n_outer do
Permutation test for variable importance of the jth predictor with n_permute shufflings

end for
end for

original data. For variable importance, a similar permutation procedure is conducted for each predictor;
here, however, the shuffling is performed on the corresponding column of the test set, so there is no need
to refit a model. This permutation effectively nullifies the predictor’s relationship with the response.
The variable importance of a predictor is hence defined as the reduction in prediction R2 caused by the
shuffling, and p-values can be computed using the procedure described above.

3.2 Implementation details and results
In Spee et al.’s analysis, they repeated the outer loop 128 times (n_outer = 128). In each repetition,
the hyperparameters being searched over are the minimum sample size of split nodes (2 to 128), the
minimum sample size of leaf nodes (1 to 128), and the maximum number of features considered at
each split (1 to total number of features). To find the best-performing hyperparameters, they employed
BMO with 128 inner iterations (n_inner = 128) and 96 initial points. Starting from each of the 96
randomly-chosen initial points, BMO sequentially attempts 128 combinations of parameters. Hence, a
total of 96 × 128 = 12,288 hyperparameter settings are tested, which is substantially smaller than an
exhaustive grid search. Within each outer loop, the shuffling was repeated 64 times (n_permute = 64) for
the permutation test of the response and each predictor. The authors reported that all hyperparameters
other than those specified above were set at their default values.

We attempted to replicate their analysis under the exact same settings, but we found it computationally
costly to fit 12,288 regression forests in each outer loop. Given the limited time and computational
resources available to us, we decided to slightly reduce the scale of the computation without sacrificing
the validity of our replication. We found that qualitatively, the authors’ results are quite resistant to
different choices of hyperparameters. As such, we reduced the number of inner iterations and initial
points to 64 and 24, respectively. All of the remaining settings are the same as those of the authors.

We summarize the prediction performance of the model in Table 1. Our results are very close to those of
Spee et al. (17.5±0.94 and 0.30±0.05), although our standard deviations are slightly smaller. Statistical
significance was perfectly reproduced. These results indicate that the model’s predictions differed from
the observed creativity judgments by 17.3 points, on average. The average prediction R2 was 0.33,
implying that the model explains approximately 30% of the total variance in creativity judgment.

In terms of variable importance, in each outer iteration, we compute the average reduction of R2 across
the 64 permutation procedures for each predictor. We create a box plot (Figure 5) that illustrates the
128 average reductions for each predictor. This plot matches Figure 1 of the original article very closely,
including the locations and heights of the boxes, the lengths of the error bars, and the exact ordering of
the ten predictors with the highest variable importance. The only difference is that our figure depicts
a greater degree of statistical significance for several predictors; this actually provides stronger support
for their claim that symbolism, emotionality and imaginativeness are the most important attributes.
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Figure 5: Importance of attributes for predicting creativity judgment
(Corresponds to Figure 1 in [Spe+23])

* p−value < .05

** p−value < .05 incl. Bonferroni
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Table 1: Metrics for prediction performance and goodness of fit
(Corresponds to Table 2 in [Spe+23])

Response Average MAE ± sd p-value of MAE Average R2 ± sd p-value of R2

Creativity 17.31 ± 0.44 p < 0.001 0.33 ± 0.02 p < 0.001

In their article, the authors constructed partial dependence plots for the six most important attributes
for all 128 fitted random forests, with the goal of characterizing the relationship between creativity
judgment and each attribute. We reproduce these plots in Figure 6. It turns out that all of the important
attributes are positively associated with the response. More importantly, we confirm the authors’ claim
that these associations cannot be described as linear — we observe sudden nonlinear changes in Figure 6,
especially for symbolism, emotionality and imaginativeness.

Setting aside any issues with model specification and feature selection, we believe that the authors’
analysis is reasonable and convincing. Since their goal was to analyze and interpret the relationship
between creativity and the attributes rather than to build a predictive model, the sampling randomness
was properly addressed by repetition whenever it was introduced. For example, the effect of randomness
introduced by data splitting was eliminated by averaging over multiple splittings, which helped improve
the stability of their results. Also, since permutation tests are totally distribution-free and especially
suitable for black-box methods, their justification of statistical significance was persuasive. Nonetheless,
as mentioned in subsection 3.3, there are several issues in the authors’ analysis. For example, two of the
hyperparameters they were searching over — the minimum sample sizes of split nodes and leaf nodes
— are highly related. It may have been more reasonable to tune only one of them, and additionally
consider tuning the number of trees in the forest.

3.3 Unexplained choices
While Spee et al. exhibit a principled approach to design choices like nested cross-validation and
hyperparameter tuning, there are several notable omissions and ambiguities in their exposition. For
instance, their rationale for including and excluding certain attributes is somewhat subjective, and their
omission of variables such as painting style raises questions about unwanted sources of variation (see
section 4). Their decision to use nested cross-validation and BMO is also mostly unexplained and
unjustified. They fail to discuss the trade-offs between these algorithms and their alternatives, which are
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Figure 6: Partial dependence plots for the six most important attributes
(Corresponds to Figures 2 and S1 in [Spe+23])
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plentiful since there exist many grid search algorithms and splitting schemes for model selection.

The authors provide no rationale behind choices like the objective function, the use of Friedman MSE as
a cross-validation criterion, and the number of trees in the forest. More generally, the decision of which
hyperparameters to optimize over was largely unaddressed. Furthermore, it is unclear how the authors
chose the number of loops to use in their algorithm, and whether this quantity was determined a priori
or if there was a stoppage criterion. This point is of special relevance when performing significance tests
for variable importance [SNS11]. Lastly, the authors did not report any methodologies that they tested
and found to be unsuccessful. This lack of transparency obscured the process by which they arrived at
their final model, which made it more challenging for us to emulate their procedure. It also makes it
harder for others to build and improve upon their work.

4 Replication of main findings
We now consider the extent to which the authors’ findings resolve their main objective, which was to
identify the perceived attributes of a painting that contribute to individuals’ judgments of its creativity.
The authors avoid making strong causal claims when discussing their results, but they frequently refer
to specific attributes as “contributing to” or “having an impact” on individuals’ creativity judgments. An
implicit assumption underlying these conclusions is that the authors accounted for all sources of variation
in creativity that they could have feasibly measured in their study — i.e., that they approximately isolated
the relationship between the 17 predictor attributes and creativity judgment.

However, we observed a potential violation of this assumption in Figure 4, as participants’ attribute
ratings and creativity judgments seem to vary systematically across the three painting styles considered
in the study. Specifically, ratings of abstract paintings tend to have lower PC1 scores, and lower PC1
scores correspond to higher creativity ratings. An analogous observation can be made for representative
paintings, high PC1 scores, and lower creativity ratings. These patterns are corroborated in the right
panel of Figure 7.

Another way in which Spee et al.’s data are not independent and identically distributed is that each
participant made many ratings. We theorize that different individuals may have exhibited different
tendencies when assigning attribute ratings and creativity judgments — perhaps each rater interpreted
the 100-point scale in a different way. We illustrate the presence of style-to-style and rater-to-rater
variability in Figure 7, where we plot the 0.1, 0.5, and 0.9 quantiles of creativity judgment for each
rater and each style. The heterogeneity in this figure validates our concerns about these two additional
sources of variability, neither of which was explicitly modeled by the authors.
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Figure 7: 0.1, 0.5, and 0.9 quantiles of creativity judgment for each rater (left) and style (right)

4.1 Mixed-effects model
We aim to determine whether the attributes identified as important by Spee et al. will change if we
reanalyze the data while accounting for variation due to rater and style. The first approach we
propose for this task is a linear mixed-effects model with creativity judgment as the response, the 17
original attributes as fixed effects, and rater, style, and rater:style as random effects. One could
argue that the authors’ objective is better framed as an inference task than a prediction task; this is why
we begin by considering a parametric model instead of a machine learning algorithm. Also, while Spee
et al. detected nonlinearity in the relationships between the response and the predictors, we assume
linearity in this section since it is not clear (i) how to model the form of this nonlinearity or (ii) whether
this nonlinearity will persist once we account for rater and style. Finally, we claim that it is more
appropriate to model rater and style as random effects than fixed effects, as their respective levels can
be viewed as random samples from broader populations of raters and styles [Tay05].

We fit two candidate mixed-effects models, one that includes rater and style as random effects and
another that also includes the interaction rater:style. We compare these nested models using a χ2-test
and select the latter. Table 2 presents a summary of the selected model. We find that the random effects
and fixed effects combine to explain approximately half of the total variance in creativity judgment,
with the random effects accounting for 30 percent and the fixed effects accounting for 20 percent. The
proportion of variance explained by the random effects is called the unadjusted intra-class correlation,
the proportion explained by the fixed effects is called the marginal R2, and the proportion explained by
both is called the conditional R2 [NJS17]. These results indicate that rater and style explain more of
the variance in individuals’ creativity judgments than the 17 original attributes, which suggests that Spee
et al. failed to account for two nontrivial sources of variation even though they collected the requisite
data for these variables. That being said, the fixed effects results in Table 2 are mostly consistent with
those obtained in section 3.2 — for instance, emotional expressiveness and symbolism have two of
the largest standardized effect sizes.

4.2 Incorporating additional variables into random forest
In section 4.1, we investigated the existence of individual effects and the necessity of accounting for style.
However, note that (i) the linear mixed-effect model cannot model the potential nonlinear relationship
between predictors and the response, and (ii) the metric we used to measure goodness of fit is actually
the R2 based on the data on which we fit the model, rather than the prediction R2. These limitations
make it harder to compare the results from section 4.1 with those obtained in section 3.2.

To the best of our knowledge, there is no ready-to-use package that incorporates random effects into
random forest models. To address the two issues mentioned above, we simply include the factors rater
and style as additional random forest predictors and redo the analysis from section 3. We now have
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Table 2: Summary of linear mixed-effects model for creativity judgment

Random effects
Variance

rater 80.06
 Unadjusted intra-class correlation = 0.30style 69.77

rater : style 44.32
residuals 315.39

Fixed effects
Estimate Standard error t-value

(Intercept) 41.43 4.95 8.36


Marginal R2 = 0.20

visual harmony -2.59 0.47 -5.49
color saturation 1.29 0.33 3.86

depth 1.38 0.37 3.75
abstraction 1.10 0.57 1.92
symbolism 4.38 0.52 8.50

accurate object 0.56 0.45 1.23
realism imaginative 1.54 0.56 2.73
liveliness animation -1.35 0.36 -3.76

emotional expressiveness 4.92 0.33 14.91
complexity 3.93 0.40 9.92

valence 2.04 0.33 6.13
color variety 0.74 0.36 2.06

color temperature 0.20 0.33 0.61
color world -0.49 0.37 -1.32

focus 0.24 0.38 0.65
brushstroke -1.20 0.42 -2.89

utilization of area 0.39 0.36 1.08

19 predictors — the 17 original attributes plus rater and style. We aim to determine whether this
change produces any differences in prediction performance or in the importance of the art attributes.
Table 3 summarizes the prediction performance of this re-implementation. We find that the difference
in prediction R2 between these results and subsection 3.2 is negligible. Hence, incorporating rater and
style does not help explain any extra variation in the test set — i.e., it does not improve the prediction
performance of the random forest algorithm.

However, if we examine the updated ordering of attribute importance (Figure 8), we find that the
inclusion of rating and style does appear to have an impact on our results. First, almost all of the
reductions of R2 decrease, and they sum up to about 0.2. Since the overall prediction R2 is unchanged, we
infer that the proportion of the total variance explained by rater and style is approximately 0.1. This
is a nontrivial proportion, and it implies that accounting for these two additional sources of variability is
important. Second, looking at the ordering of the variable importance, we find that complexity surpasses
imaginativeness and becomes the third most important attribute. A similar result was observed in the
mixed-effects model. This suggests that the authors’ original model may not have included all relevant
predictors, and that their results are potentially sensitive to the inclusion of new predictors.

5 Discussion
While our efforts to reproduce and replicate Spee et al.’s findings on creativity in Western art were largely
successful, there are several shortcomings of both the authors’ analysis and our reanalysis that warrant
further discussion. First, as discussed in section 3.3, the authors provided minimal justification for several
design choices in their random forest algorithm, including the choice of the method itself. Other machine
learning algorithms such as boosting or neural networks could have been inserted into the authors’
framework without much additional effort. We did not investigate these alternative methods due to the
time constraints of this project and the space constraints of this report, but it would be instructive to
do so to ensure that the authors’ takeaways are not a byproduct of their choice of algorithm.

Perhaps the authors’ most notable oversight was their failure to control for variation in creativity
judgment due to rater and style. This was the basis of our replication efforts in section 4. We
demonstrated that accounting for these variables — either as random effects in a linear mixed-effects
model or as additional random forest predictors — had a small but noticeable effect on the relative
importance of the 17 attributes. For example, we found that one of the attributes mentioned in the
title of Spee et al.’s paper (imaginativeness) was less important than at least one of the unmentioned
attributes after we accounted for rater and style.
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Figure 8: Importance of attributes for predicting creativity judgment (given rater and style)
(Corresponds to Figure 1 in [Spe+23])

* p−value < .05

** p−value < .05 incl. Bonferroni
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Table 3: Metrics for prediction performance and goodness of fit (given rater and style)
(Corresponds to Table 2 in [Spe+23])

Response Average MAE ± sd p-value of MAE Average R2 ± sd p-value of R2

Creativity 17.29 ± 0.73 p < 0.001 0.34 ± 0.04 p < 0.001

Our efforts revealed Spee et al.’s conclusions to be relatively robust, but the generalizability of these
conclusions is questionable due to the limited scope of the sample and study materials. The authors’
description of their recruiting process implies that their sample of University of Vienna psychology
students is a convenience sample, or at best a random sample drawn from a very specific population.
It is reasonable to assume that older individuals, those with a different education level, or those from
another city or country might have different perceptions of creativity in Western art, and it is not possible
to capture the perceptions of these individuals using the authors’ data. Also, Spee et al.’s study only
considers creativity in Western art paintings. As such, their conclusions should not be extrapolated to
the many other cultures and art forms in which creativity is a salient concept.

Finally, we express some cause for concern regarding the effectiveness of the 100-point Likert scale
on which the participants recorded their creativity and attribute ratings. As we alluded to briefly in
section 2.2, the data suggest that the raters may not have had the capacity or energy to provide calibrated
ratings on such a detailed scale. Even if they did, they may have interpreted the scale differently from
other raters — see Figure 7 for example, where the rater in the bottom row assigned a creativity rating
close to zero for more than half of the paintings, while the rater in the top row assigned a median rating
of nearly 75. One can account this variation via modeling as we did in section 4, but the authors may
have been able to reduce or avoid it by using a simpler rating scheme in their study design.

Overall, Spee et al.’s work was very amenable to reproduction and replication, although it would have
been ideal if they had provided more commentary regarding a few of the choices underlying their analysis.
The authors published clean data and relatively detailed documentation, both of which greatly facilitated
our efforts in this project. In the future, we recommend that they also publish their source code, as doing
so would further enhance the transparency and accessibility of their findings.
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