

# Forecasting the weather with deep learning

A predictive analysis of daily temperature and precipitation in 21 United States cities

Gabriel Patron, Jaylin Lowe, and Tim White STATS 604 - Project 4



### Main tasks

#### 1. Find data

a. METAR or something else?

#### 2. Specify, train, and evaluate models

a. What class of models? How many models?

#### 3. Make our workflow reproducible

a. How does Docker work?



### Data considerations

|           | Advantages                                 | Disadvantages                                        |  |  |
|-----------|--------------------------------------------|------------------------------------------------------|--|--|
|           | Ground truth dataset                       | Slow to pull                                         |  |  |
| METAR     | Access to weather condition codes for snow | Slow to pull                                         |  |  |
|           | Fast to pull                               | Many weather condition codes                         |  |  |
| Meteostat | Contains similar weather<br>variables      | missing; only snow depth and precipitation available |  |  |



Pull data dating back to January 1st, 2014

Use METAR for precipitation covariates

Use Meteostat for **all other covariates**, such as temperature, humidity, atmospheric pressure, and others

Use Meteostat for **all neighboring airport covariates** for three closest airports to each station

### Preprocessing

- 1. Impute missing values using values of previous hour and next hour
- 2. Calculate min/avg/max temp and precip/snow for each day
- 3. Save temperatures and other weather covariates at hours 0, 12, and 23

Final covariates:

- Basic date and airport information
- Five response variables
- Weather conditions for hours 0, 12, 23
- Information for three nearest airports





## Decisions

Five models:

| Daily temperature (continu1.1.2.Average3.Maximum | Jous) | <ul><li>Daily precipitation (binary)</li><li>1. Any precipitation</li><li>2. Snow</li></ul> |
|--------------------------------------------------|-------|---------------------------------------------------------------------------------------------|
| One model for temperature                        | or    | Three models for temperature                                                                |
| One model for precipitation                      | or    | Two models for precipitation                                                                |
| One model per target                             | or    | <del>21 models per target</del>                                                             |

### Evaluation strategy



0

### NeuralForecast model architectures

| Long short-term memory (LSTM)    | Neural hierarchical interpolation (NHITS) |
|----------------------------------|-------------------------------------------|
| Lie e d'écurtementeure           |                                           |
| Used for temperature             | Used for precipitation                    |
| Tuned and trained with AutoLSTM  | Tuned and trained with AutoNHITS          |
|                                  |                                           |
| 20 hyperparameter configurations | 10 hyperparameter configurations          |
| 80 minutes per model             | 160 minutes per model                     |
|                                  |                                           |

### **Performance metrics**

#### Temperature RMSE, MAE

#### **Precipitation**

Accuracy, AUC, Brier

#### **Baselines**

- 1. **Naive** today  $\leftarrow$  yesterday
- 2. **SeasonalNaive** today  $\leftarrow$  one year ago
- 3. **HistoricAverage** today ← moving average of (train + appended test)

### **Results for temperature**

|                 | Minimu   | m temp | Average | e temp    | Maximu | Maximum temp |  |  |
|-----------------|----------|--------|---------|-----------|--------|--------------|--|--|
|                 | RMSE MAE |        | RMSE    | RMSE MAE  |        | MAE          |  |  |
| LSTM (ours)     | 3.39     | 2.47   | 3.50    | 2.57      | 3.91   | 2.87         |  |  |
| Naive           | 4.32     | 3.09   | 3.95    | 2.77      | 4.62   | 3.31         |  |  |
| SeasonalNaive   | 5.54     | 4.08   | 5.32    | 3.92      | 6.13   | 4.57         |  |  |
| HistoricAverage | 8.14     | 6.62   | 8.52    | 8.52 6.97 |        | 7.56         |  |  |
|                 |          |        |         |           |        |              |  |  |

## **Results for precipitation**

|                 | Any pr   | ecipitat | ion   | Snow     |      |       |  |
|-----------------|----------|----------|-------|----------|------|-------|--|
|                 | Accuracy | AUC      | Brier | Accuracy | AUC  | Brier |  |
| MHITS (ours)    | 0.62     | 0.66     | 0.23  | 0.92     | 0.90 | 0.06  |  |
| Naive           | 0.59     | 0.59     | 0.41  | 0.90     | 0.69 | 0.10  |  |
| SeasonalNaive   | 0.56     | 0.55     | 0.44  | 0.88     | 0.63 | 0.12  |  |
| HistoricAverage | 0.58     | 0.60     | 0.24  | 0.92     | 0.78 | 0.07  |  |

### **City-specific results**



## **City-specific results**

|                       | Mir                               | n temp | Avg temp                          |      | Max                               | Max temp |                        | Any precip |                        | Snow     |  |
|-----------------------|-----------------------------------|--------|-----------------------------------|------|-----------------------------------|----------|------------------------|------------|------------------------|----------|--|
|                       | $\overline{\widehat{\mathbf{y}}}$ | RMSE   | $\overline{\widehat{\mathbf{y}}}$ | RMSE | $\overline{\widehat{\mathbf{y}}}$ | RMSE     | $\widehat{\mathbf{p}}$ | Accuracy   | $\widehat{\mathbf{p}}$ | Accuracy |  |
| Ann Andrew (WADD)     | 0.7                               | 4.5    | 0.0                               | 4.0  | 14.9                              | 4.5      | 0.40                   | 0.58       | 0.10                   | 0.86     |  |
| Anchorage (PANC)      | 0.5                               | 3.2    | 2.3                               | 2.9  | 5.7                               | 3.1      | 0.53                   | 0.59       | 0.22                   | 0.78     |  |
| DOISE (NDUI)          | 0.0                               | 3.4    | 10.0                              | 4.1  | 11.0                              | 4.4      | 0.04                   | 0.64       | 0.12                   | 0.87     |  |
| Chicago (KORD)        | 7.5                               | 4.1    | 10.7                              | 4.3  | 15.8                              | 4.7      | 0.52                   | 0.56       | 0.12                   | 0.86     |  |
| Denver (KDEN)         | 3.2                               | 4.3    | 8.4                               | 4.9  | 18.1                              | 5.5      | 0.36                   | 0.66       | 0.15                   | 0.85     |  |
| Detroit (KDTW)        | 7.0                               | 3.7    | 10.9                              | 3.8  | 15.8                              | 4.2      | 0.51                   | 0.57       | 0.14                   | 0.83     |  |
| Honolulu (PHNL)       | 22.9                              | 1.4    | 25.4                              | 0.9  | 29.2                              | 1.0      | 0.53                   | 0.61       | 0.00                   | 1.00     |  |
| (WTAU)                | 17.0                              | 4.0    | 01.0                              | 3.8  | 07.6                              | 4.1      | 0.49                   | 0.62       | 0.00                   | 1.00     |  |
| Miami (KMIA)          | 23.3                              | 2.0    | 25.8                              | 1.7  | 29.5                              | 1.8      | 0.49                   | 0.62       | 0.00                   | 1.00     |  |
| Minieapoiris (MisP)   | 4.0                               | 4.4    | 1.1                               | 4.8  | 14.1                              | 4.5      | 0.41                   | 0.50       | 0.20                   | 0.79     |  |
| Oklahoma City (KOKC)  | 10.2                              | 4.1    | 16.9                              | 4.3  | 22.7                              | 4.7      | 0.33                   | 0.66       | 0.05                   | 0.97     |  |
| Nashville (KBNA)      | 11.9                              | 4.2    | 16.9                              | 4.0  | 22.2                              | 4.4      | 0.46                   | 0.52       | 0.03                   | 0.97     |  |
| New York (KJFK)       | 10.1                              | 3.0    | 12.6                              | 3.1  | 16.5                              | 3.9      | 0.44                   | 0.52       | 0.04                   | 0.95     |  |
| Phoenix (KPHX)        | 18.6                              | 2.7    | 22.9                              | 3.4  | 30.4                              | 3.1      | 0.18                   | 0.86       | 0.01                   | 1.00     |  |
| Portland (ME) (KPWM)  | 5.9                               | 3.9    | 8.2                               | 3.9  | 13.0                              | 4.5      | 0.47                   | 0.52       | 0.12                   | 0.86     |  |
| Portland (OR) (KPDX)  | 9.4                               | 2.8    | 12.4                              | 2.8  | 18.4                              | 3.6      | 0.43                   | 0.69       | 0.03                   | 0.96     |  |
| Salt Lake City (KSLC) | 7.3                               | 3.5    | 10.5                              | 4.2  | 17.2                              | 4.7      | 0.35                   | 0.63       | 0.14                   | 0.82     |  |
| San Diego (KSAN)      | 14.1                              | 2.0    | 16.2                              | 1.4  | 19.8                              | 2.3      | 0.22                   | 0.75       | 0.00                   | 1.00     |  |
| See Energiese (VGED)  | 11 8                              | 1.8    | 14.0                              | 1.7  | 10.1                              | 2.6      | 0.01                   | 0.74       | 0.00                   | 1.00     |  |
| Seattle (KSEA)        | 8.4                               | 2.4    | 11.6                              | 2.5  | 16.1                              | 3.3      | 0.47                   | 0.70       | 0.03                   | 0.95     |  |
| Wasnington DC (NDCA)  | 12.0                              | 3.1    | 14.9                              | 3.3  | 20.0                              | 4.1      | 0.41                   | 0.55       | 0.02                   | 0.98     |  |



### **Specifications**



Multiplatform

Consistent across time zones

### Train

- fetch\_meteostat.py
- fetch\_metar.R
- clean\_meteostat\_and\_metar.R
- train.py



### Predict

- fetch\_updated\_meteostat.py
- fetch\_updated\_metar.R
- clean\_meteostat\_and\_metar.R
- predict.py





### **Data limitations**

- Omitted information: additional hours, other weather conditions, intensity of weather conditions, more historical data
- Differences in report times between pmetar (R) and Metar (Python)

## **Modeling limitations**

- Separate models ⇒ Predictions not always logical when evaluated together
- Did not consider classical models (e.g., ARIMA)

### References

Cristian Challu et al. "NHITS: Neural hierarchical interpolation for time series forecasting". In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 37. 6. 2023, pp. 6989–6997.

Pawel Cwiek. pmetar: Processing METAR Weather Reports. R package version 0.5.0. 2023. url: https://CRAN.R-project.org/package=pmetar.

Federico Garza et al. StatsForecast: Lightning fast forecasting with statistical and econometric models. PyCon Salt Lake City, Utah, US 2022. 2022. url: https://github.com/Nixtla/ statsforecast.

Gloria Kulesa. "Weather and aviation: How does weather affect the safety and operations of airports and aviation, and how does FAA work to manage weather-related effects?" In: The Potential Impacts of Climate Change on Transportation. 2003.

Remi Lam et al. "Learning skillful medium-range global weather forecasting". In: Science (2023), eadi2336.

Christian Sebastian Lamprecht. Meteostat Python. Python package version 1.6.7. 2023.

Dirk Merkel. "Docker: lightweight linux containers for consistent development and deployment". In: *Linux journal* 2014.239 (2014), p. 2. Meteostat. *Meteostat: The weather's record keeper.* 2023. url: https://meteostat.net/en/.

Kin G. Olivares et al. NeuralForecast: User friendly state-of-the-art neural forecasting models. PyCon Salt Lake City, Utah, US 2022. 2022. url: https://github.com/Nixtla/neuralforecast.

Zhaoxia Pu and Eugenia Kalnay. "Numerical weather prediction basics: Models, numerical methods, and data assimilation". In: Handbook of Hydrometeorological Ensemble Forecasting (2019), pp. 67–97.

Kaspar Rufibach. "Use of Brier score to assess binary predictions". In: Journal of Clinical Epidemiology 63.8 (2010), pp. 938–939.

Martin G Schultz et al. "Can deep learning beat numerical weather prediction?" In: Philosophical Transactions of the Royal Society A 379.2194 (2021), p. 20200097.

Alex Sherstinsky. "Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network". In: Physica D: Nonlinear Phenomena 404 (2020), p. 132306.

Sima Siami-Namini, Neda Tavakoli, and Akbar Siami Namin. "A comparison of ARIMA and LSTM in forecasting time series". In: 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA). IEEE. 2018, pp. 1394–1401.

Emily Wilkins et al. "Effects of weather conditions on tourism spending: implications for future trends under climate change". In: Journal of Travel Research 57.8 (2018), pp. 1042–1053.





#### **Results for precipitation**





Snow

Any precipitation