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Main tasks

1. Find data
a. METAR or something else?

2. Specify, train, and evaluate models
a. What class of models? How many models?

3. Make our workflow reproducible
a. How does Docker work?



Data



Data considerations

Advantages Disadvantages 

METAR
Ground truth dataset 

Access to weather condition 
codes for snow 

Slow to pull

Meteostat
Fast to pull

Contains similar weather 
variables 

Many weather condition codes 
missing; only snow depth and 

precipitation available



Approach

Pull data dating back to January 1st, 2014

Use METAR for precipitation covariates

Use Meteostat for all other covariates, such as temperature, humidity, 
atmospheric pressure, and others

Use Meteostat for all neighboring airport covariates for three closest airports to 
each station



Preprocessing

1. Impute missing values using values of previous hour and next hour
2. Calculate min/avg/max temp and precip/snow for each day
3. Save temperatures and other weather covariates at hours 0, 12, and 23 

Final covariates:
● Basic date and airport information 
● Five response variables
● Weather conditions for hours 0, 12, 23 
● Information for three nearest airports 





Models



Decisions

Five targets for each of the 21 cities:

Daily temperature Daily precipitation
1. Minimum 1. Any precipitation
2. Average 2. Snow
3. Maximum

One model for temperature          or          Three models for temperature

One model for precipitation          or          Two models for precipitation

One model per target   or          21 models per target

One model for temperature          or          Three models for temperature

One model for precipitation          or          Two models for precipitation

One model per target   or          21 models per target

Five models:

Daily temperature (continuous) Daily precipitation (binary)
1. Minimum 1. Any precipitation
2. Average 2. Snow
3. Maximum



…

Evaluation strategy
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NeuralForecast model architectures 

Long short-term memory (LSTM) Neural hierarchical interpolation (NHITS)

Special class of RNN

Faster

Learn and combine 
multiple temporal 

patterns with 
different resolutions

Several MLPs →

Slower

Continuous response ✅ Continuous response ✅
Binary response ❌ Binary response ✅

Used for temperature

Tuned and trained with AutoLSTM

20 hyperparameter configurations

80 minutes per model

Used for precipitation

Tuned and trained with AutoNHITS

10 hyperparameter configurations

160 minutes per model



Performance metrics

Temperature

RMSE, MAE

Baselines

1. Naive today ← yesterday

Precipitation

Accuracy, AUC, Brier

2. SeasonalNaive today ← one year ago

3. HistoricAverage today ← moving average of (train + appended test)



Results for temperature



Results for precipitation



City-specific results

Chicago Denver Minneapolis

Honolulu San Diego San Francisco



City-specific results



Docker



SpecificationsSpecifications

Multiplatform

Ubuntu R PythonDocker 

Consistent across time zones



Train

● fetch_meteostat.py
● fetch_metar.R
● clean_meteostat_and_metar.R
● train.py

Jan 1
2014 (UTC)

Nov 30
2023



Predict

● fetch_updated_meteostat.py
● fetch_updated_metar.R
● clean_meteostat_and_metar.R
● predict.py

Jan 1
2014  (UTC)

T+1  T+2  T+3  T+4

Nov 30
2023

T



Discussion



Data limitations

● Omitted information: additional hours, other weather conditions, intensity of 
weather conditions, more historical data

● Differences in report times between pmetar (R) and Metar (Python)

Modeling limitations

● Separate models ⇒ Predictions not always logical when evaluated together

● Did not consider classical models (e.g., ARIMA)
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