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1 Introduction

1.1 Background

Sequential Monte Carlo (SMC) methods are a flexible class of algorithms for approximating sequences of
probability distributions via weighted samples, or particles. Many varieties of SMC algorithms exist, but
they generally rely on the same core procedures: sampling particles from a tractable initial distribution,
mutating them with Markov chain Monte Carlo (MCMC) moves, updating their weights to track the
sequence of target distributions, and resampling them to avoid weight degeneracy [1]. SMC is often
employed in settings where the entire sequence of distributions is of interest, including as a filtering
algorithm for state-space models [2, 3]. However, the same underlying ideas can also be used to conduct
inference for a single static target, which may be high-dimensional or multimodal. In such settings, these
algorithms are referred to as SMC samplers [4, 5].

In a Bayesian regime with latent random variables z and observed random variables x, SMC samplers offer
a potentially convenient method of approximating the posterior p(z |x) ∝ p(z)p(x | z), where p(z)p(x | z)
can be evaluated pointwise but p(z |x) cannot be sampled from directly due to the intractable normalizing
constant p(x). A common approach in this setting is to define the prior p(z) as the initial distribution and
the posterior as the final target, and to bridge the two with a sequence of auxiliary targets p(z)p(x | z)τt
constructed according to a tempering schedule 0 = τ0 < · · · < τT = 1. For problems of this nature,
SMC samplers are a promising alternative to importance sampling and MCMC, as (i) they are amenable
to parallelization over particles, (ii) they allow straightforward estimation of p(x), and (iii) they can be
adapted based on the current particles to facilitate exploration of the latent space [6].

The empirical performance of SMC samplers typically hinges on the design of the tempering, resampling,
and mutation stages of the algorithm. There are well-established tempering and resampling strategies
that tend to be suitable for many problems. For the former, one can use root-finding to select tempera-
tures τt that minimize the chi-square pseudo-distance between consecutive targets [7], while for the latter
it is common to use stratified or systematic resampling [8]. In contrast, many choices for the mutation
procedure are less reliable, particularly for high-dimensional or otherwise complex models. A prevalent
strategy is to apply a k-step Metropolis-Hastings kernel within each SMC iteration, using the empirical
covariance of the weighted particles to inform the covariance of the proposal distribution. However, it is
not trivial to select a suitable value of k, either a priori or adaptively. The performance of SMC samplers
is known to degrade when k is too small due to insufficient mixing of the mutation kernels, but the
algorithm is computationally costly when k is too large since its complexity is linear in this quantity [9].

A recent proposal by Dau and Chopin offers a principled solution to this trade-off with a “waste-free”
variant of SMC that claims to (i) decrease the effort required to tune the Metropolis-Hastings mutation
kernel and (ii) reduce the asymptotic variance of SMC estimators under some assumptions [10]. Whereas
a standard SMC sampler resamples N of the N weighted particles in each iteration, mutates each of
them k times, and discards the intermediate mutations, waste-free SMC resamples M<<N particles and
mutates each of them P−1 times, keeping all mutations and thus recovering N=MP particles. Dau and
Chopin demonstrate the advantages of this procedure compared to standard SMC in three numerical
experiments: fitting a Bayesian logistic regression model, enumerating Latin squares, and evaluating
Gaussian orthant probabilities. However, the finite-sample benefits of their approach (or potential lack
thereof) in other complex inference settings have not yet been explored.

1.2 Objectives and outline

In all three of Dau and Chopin’s experiments, the dimension of the target distribution is fixed within
each SMC iteration even if the dimension of the state space increases with time. However, there exist
many interesting model classes (e.g., finite mixture models, change-point models) for which the number
of unknown parameters to infer is itself unknown [11]. Motivated by this, we will study the utility of em-
bedding waste-free resampling and mutation within an SMC sampler designed for a challenging Bayesian
inverse problem that requires transdimensional inference: detecting and distinguishing overlapping light
sources in astronomical images [12]. While our SMC algorithm is tailored to the task of object detection,
it nonetheless falls within the class of samplers considered by Dau and Chopin. Hence, we theorize that
the benefits of their waste-free approach are potentially attainable in this setting.

The remainder of this report is guided by the following questions:
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1. Why are waste-free SMC samplers purported to facilitate implementation and reduce asymptotic
variance compared to standard SMC samplers?

2. How does the variability of posterior estimates change across mutation kernel parameters for stan-
dard and waste-free SMC samplers? Is this variability smaller for one method than the other?

3. How accurate and calibrated are the posterior estimates of a waste-free SMC sampler in the context
of light source detection? How does this compare to a standard SMC sampler?

After introducing our model and SMC sampler for light source detection in subsection 2.1 and subsec-
tion 2.2, respectively, we will address the first of the above questions in subsection 2.3. We will highlight
the algorithmic differences between the standard and waste-free versions of our sampler and discuss
the favorable properties of the waste-free approach. In section 3, we will investigate the remaining two
guiding questions through experiments involving small synthetic images of crowded starfields. First, in
subsection 3.1, we will assess the variability of several light source detection metrics across many runs of
the standard and waste-free samplers on the same set of four images. Then, in subsection 3.2, we will
evaluate the accuracy and calibration of the standard and waste-free samplers across many images using
similar metrics. Finally, we will conclude in section 4 with a discussion of the limitations of our analysis
and the challenges of transdimensional inference.

2 Methods

2.1 Notation and Bayesian model

Astronomical cataloging is the task of inferring the positions and properties of light sources from images
captured by large sky surveys. This task is challenging for images that contain visually overlapping light
sources, as the number of sources in such an image is uncertain and the properties of the blended sources
are ambiguous [13]. Here, we take a probabilistic approach to astronomical cataloging by considering a
generative model for small images depicting many visually overlapping stars.

Let s denote the number of stars in an image of height H pixels and width W pixels. We will henceforth
refer to s as the source count of the image, and we define s ∼ Uniform{0, 1, 2, ..., D} for some maximum
number of stars D. Each star in the image has a location and a flux (i.e., brightness). Given s, we model
i.i.d. locations u1, u2, ..., us ∼ Uniform([0, H]× [0,W ]) and fluxes f1, f2, ..., fs ∼ N (µ, σ2), where µ and
σ are center and scale parameters informed by astrophysics.

Together, the collection of latent variables defined above forms a catalog z := {s, {uj}sj=1, {fj}sj=1} that
describes the imaged stars. Given a catalog z, the intensity of the image at pixel (h,w) is xhw | z ∼
Poisson(λhw(z) + γ), where γ is the background intensity of the image and λhw(z) is the weighted sum
of the fluxes at pixel (h,w), with weights determined by a bivariate Gaussian point-spread function.

2.2 Sequential Monte Carlo for light source detection

Given an image x = {{xhw}Hh=1}Ww=1, we aim to characterize the posterior distribution p(z |x) of possible
catalogs that explain the image. To do so, we generate a collection of weighted catalogs from p(z |x) using
an SMC sampler that was recently proposed with the task of light source detection in mind [14]. This
sampler, which uses likelihood tempering as introduced in subsection 1.1, offers a convenient approach
to transdimensional inference. It does not require the user to define, or subsequently sample from,
transdimensional proposals, which can hinder the scalability and mixing quality of potential alternatives
such as reversible jump MCMC [15].

Instead, this SMC sampler initializes an equal number of catalogs with each candidate value of s and
preserves the source count of each catalog for the duration of the algorithm. A set of importance weights
is maintained for each “block” of catalogs that have the same source count, and the resampling step
of the algorithm is performed within these blocks using the intra-block weights. The sampler otherwise
progresses through the usual mutation and reweighting stages of SMC, exploring the space of light source
fluxes and locations for catalogs with various source counts and iteratively assigning weights to catalogs
based on their plausability under the current target. A separate set of inter-block importance weights is
also maintained throughout the algorithm, and the inter-block weights of the catalogs returned after the
final iteration can be used to assess the posterior probabilities of different values of s.
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Algorithm 1 Sequential Monte Carlo sampler, stratified by source count

Input: image x; prior p(z); likelihood p(x | z); Metropolis-Hastings kernel MHτ (z, dz) for τ ∈ [0, 1];
number of blocks B (indexed by b); number of catalogs per block N (indexed by n);
choice of resampling scheme (e.g., multinomial, stratified, systematic),
choice of standard mutation (with parameter k) or waste-free mutation (with parameters M and P=N/M).

Iteration t← 0. Tempering exponent τt ← 0.

while τt < 1 do

t← t + 1.

if t = 0 then

Catalogs zbn
t ∼ p(z) such that ∀ b, sb1t = · · · = sbNt .

Unnormalized weights wbn
t ← 1.


Initialize

Intra-block normalized weights W̃ bn
t ← 1

N .

Inter-block normalized weights W bn
t ← 1

BN .

if t > 0 then

for block b ∈ {1, ..., B} do

if standard then

Resample N indices {Abn
t }

N
n=1 ← resample(N, {wbn

t−1}
N
n=1).

For n ∈ {1, ..., N}, mutate zbn
t with k-step kernel MHτt−1

(z
Abn

t
t−1 , dz) and keep the final mutation.



Resample
and

mutateif waste-free then

Resample M indices {Abn
t }

M
n=1 ← resample(M, {wbn

t−1}
N
n=1).

For n ∈ {1, ...,M}, mutate zbn
t with (P−1)-step kernel MHτt−1

(z
Abn

t
t−1 , dz) and keep all mutations.

For n ∈ {1, ..., N}, reset W̃ bn
t−1 ← 1

N and W bn
t−1 ← 1

N

∑N
n=1 W bn

t−1.

Update τt ← τt−1 + δ, where δ ∈ [0, 1−τt−1].
}

Temper

Update wbn
t ← W bn

t−1p(x | z
bn
t )τt−τt−1 .

Update W̃ bn
t ← wbn

t /
∑

n wbn
t .


Update weights

Update W bn
t ← wbn

t /
∑

b

∑
n wbn

t .

Output: Weighted catalog approximation {{zbn
t ,W bn

t }
B
b=1}

N
n=1 of p(z | x).

We formalize this procedure, which we will henceforth refer to as the “standard” version of our SMC
sampler, in Algorithm 1. We emphasize that the mutation kernel for this standard sampler is assumed to
be a k-step Metropolis-Hastings kernel that is invariant under the current target distribution, as this is
the setting considered by Dau and Chopin. In the context of light source detection, this kernel comprises
a Gaussian random walk for the flux of each light source and a truncated Gaussian random walk for the
location, with proposal variances fixed to a fraction of the prior variance in both cases.

As discussed in subsection 1.1, the number of Metropolis-Hastings steps k per SMC iteration is a crucial
user-specified parameter. A large k is favorable since it permits greater exploration of potential fluxes
and locations, but too large a k may be computationally prohibitive since the mutation step requires
skN likelihood evaluations per SMC iteration for each block of catalogs, where s is the source count of
catalogs in that block. Methods have been proposed to set k adaptively — e.g., by stopping the mutation
procedure when some condition on the squared jumping distance is satisfied — but Dau and Chopin
assert that these strategies tend to be empirically unreliable or conceptually flawed.

2.3 Waste-free resampling and mutation

Dau and Chopin’s waste-free formulation of the resampling and mutation steps, as introduced in subsec-
tion 1.1, is motivated by the trade-off between computational demand and latent space exploration that
is inherent in the choice of k [10]. Their approach, which can be applied to a general class of SMC sam-
plers, including ours, claims to increase the robustness of the algorithm to the choice of mutation kernel
parameters. It requires only a minor modification to a standard SMC sampler: Instead of resampling
N catalogs, mutating each catalog k times, and keeping the final mutated catalogs, we now resample
M<<N catalogs, mutate each of them P−1 times, and keep all N=MP resulting catalogs. Thus, waste-
free SMC essentially replaces the choice of k with the choice of M , and the latter is purported to exert
less influence on the quality of the weighted catalogs produced by the algorithm. In the SMC sampler
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Figure 1: Four 16×16 images from our Bayesian model with true source count s ∈ {2, 4, 6, 8}
(Pixel intensities reflect magnitude of flux and red crosses indicate locations of light sources)

introduced in subsection 2.2, this modification occurs within each block of catalogs, as demonstrated in
Algorithm 1.

The authors prove that waste-free SMC samplers yield an unbiased estimate of the normalizing constant
of each target distribution in the sequence, and that estimators computed under the weighted particle
approximation of each target are consistent and asymptotically normal. While these properties are the
same as those possessed by a standard SMC sampler, the waste-free procedure also provides a notable
additional benefit: Under some assumptions in the so-called long-chain regime where P → ∞, the output
of a waste-free SMC sampler has a smaller asymptotic variance than that of a corresponding standard
SMC sampler.

As Dau and Chopin discuss, the supposed stability and reduced variance of waste-free SMC samplers
is attributable to (i) their reliance on only a small number of potentially highly correlated ancestor
catalogs in each iteration and (ii) their utilization of the P−2 “intermediate” mutations that would be
discarded by a standard SMC sampler. An additional insight that the authors do not allude to is the
potential link between their waste-free procedure and product-form Monte Carlo estimators [16]. The
mutation procedure in a waste-free SMC sampler is expected to behave similarly to M independent
Markov chains with the same target distribution. Therefore, it is perhaps not surprising that waste-free
SMC estimators, which are computed via repeated combination of the output of these quasi-independent
chains, might have a smaller asymptotic variance than standard SMC estimators, which are based on
repeated combination of the output of a single chain. In the following section, we will investigate whether
these favorable results regarding waste-free SMC hold in the context of light source detection, a regime
where the standard SMC sampler introduced above has previously demonstrated strong performance.

3 Experiments

3.1 Variability of posterior estimates for individual images

In all three of their experiments, Dau and Chopin demonstrate that waste-free SMC produces estimates
that are more consistent and less variable across various choices ofM and P than standard SMC estimates
are across choices of k. We aim to determine if these same trends hold for our standard and waste-free
SMC samplers, which are tailored to light source detection. As such, our first experiment focuses on
the variability of the posterior mean source count, posterior mean total flux, and estimated normalizing
constant of four images with different source counts across many runs of standard and waste-free SMC.
We generate four synthetic images of size 16 pixels by 16 pixels from the model in subsection 2.1. Figure 1
displays these images, which have source counts of two, four, six, and eight, respectively.

We consider five combinations of mutation kernel parameters for each of the two samplers. These
parameters are listed in Table 1. Following Dau and Chopin, we selected these parameters to ensure that
each sampler was allowed the same number of calls to the likelihood function in each SMC iteration.
This amounts to ensuring that kN=MP for any choices of {k,N} and {M,P}, as the standard and
waste-free samplers require skN and sMP likelihood evaluations, respectively, per SMC iteration for
each block of catalogs. For each of these parameter combinations and each of the four images, we run the
standard and waste-free samplers 100 times each. We implemented this experiment (and the experiment
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Table 1: Mutation kernel parameters for our SMC samplers in the experiments in subsection 3.1

(a) Standard

Number of iterations k Catalogs per block N
5 2000
25 400
50 200
100 100
200 50

(b) Waste-free

Resampled ancestors M Number of iterations P
25 400
50 200
80 125
125 80
200 50

Figure 2: Posterior mean source count estimated in 100 runs of SMC for four images

(Whiskers cover the middle 90% of runs, extending to the 5th and 95th quantiles)

in subsection 3.2) in PyTorch on one NVIDIA GPU.1

Figure 2 displays the distribution of the posterior mean source counts across the 100 runs of the two
samplers for each of the four images. Overall, the variability of the posterior mean source counts does
not appear to be meaningfully impacted by the choice of the mutation kernel parameters, at least given
the computational budget prescribed in Table 1. For the standard sampler, there is some indication that
choosing too small or too large a k is suboptimal — variability is largest for k=200 for the image with
two sources, while it is largest for k=5 for the image with four sources. However, the impact of a poor
choice of k seems fairly minimal in this setting. We also find that the variability of the estimated source
counts is similar in magnitude between the standard and waste-free samplers. For both methods, this
variability is greater for images with higher source counts, which is not surprising since these images
involve more overlap between sources and are thus more ambiguous.

Figure 3 and Figure 4 illustrate similar patterns for the posterior mean total flux and the log of the
normalizing constant (i.e., log p(x)), respectively. For the former, both samplers provide accurate esti-
mates of the true observed total flux for all four images (as indicated by the gray dotted lines), and the

1Our code is available at https://github.com/timwhite0/smc object detection/tree/wastefree.
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Figure 3: Posterior mean total flux estimated in 100 runs of SMC for four images

(Whiskers cover the middle 90% of runs, extending to the 5th and 95th quantiles)

variability of these estimates is larger for more crowded images. For the log of the normalizing constant,
a quantity for which both samplers are known to provide unbiased and consistent estimates, we observe
a similar trend. It is somewhat challenging to interpret these normalizing constants in our transdimen-
sional setting, but they can essentially be viewed as a reflection of the marginal likelihood of the images
under all configurations of source counts, fluxes, and locations considered by our prior. In both Figure 3
and Figure 4, the two methods appear to be robust to their respective mutation kernel parameters.

Ultimately, the results of our first experiment suggest that waste-free mutation does not meaningfully
reduce the variability of posterior estimates in the context of our light source detection model. The
asymptotic variance result proved by Dau and Chopin is not borne out in our simulations, likely because
this a finite-sample setting where both samplers perform quite well.

3.2 Accuracy and calibration of posterior estimates across many images

In our second experiment, we investigate the accuracy and calibration of the posterior mean source
counts estimated by standard and waste-free SMC across a large collection of images. We generate 1,500
images of size 16 pixels by 16 pixels from the model in subsection 2.1 with true source counts ranging
uniformly from zero to eight. We run our standard and waste-free samplers once for every image, and
we fix their respective mutation kernel parameters at reasonable values based on the results of our first
experiment ({k,N} = {100, 100} for standard, {M,P} = {80, 125} for waste-free).

Standard SMC yields a correct point estimate (i.e., posterior mean count rounded to the nearest integer)
of the true source count in 1,246 of the 1,500 images (83.1%), with a mean absolute error of 0.197. Waste-
free SMC achieves similar accuracy, yielding a correct point estimate in 1,212 of the 1,500 images (80.8%)
with a mean absolute error of 0.217. Thus, both samplers are capable of estimating the true source counts
of images from our model with relatively high accuracy, and they also capture the uncertainty surrounding
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Figure 4: log p(x) estimated in 100 runs of SMC for four images

(Whiskers cover the middle 90% of runs, extending to the 5th and 95th quantiles)

these estimates.

To illustrate the latter point, Figure 5 displays the accuracy, calibration, and absolute error of the
standard and waste-free estimates among images with each true source count. For both samplers, clas-
sification accuracy (i.e., the proportion of images with a correct estimate among those with a particular
source count) decreases as the true source count increases but remains above 50% even in crowded images
containing eight stars. In such images, the absolute error of both samplers’ posterior mean source counts
is still only around 0.5, on average, and it ranges no higher than 1 for most images. The middle panel
illustrates that both standard and waste-free SMC are well-calibrated in the sense that (i) their posterior
mean source counts are close to the true source counts, on average, for s ∈ {0, 1, 2, ..., 8} and (ii) these
estimates exhibit greater variability in more ambiguous images. Similar to our first experiment, these
results suggest that waste-free SMC does not hold a clear advantage over standard SMC for the task of
detecting light sources in images.

4 Discussion

The results of the two experiments indicate that our waste-free SMC sampler achieves comparable perfor-
mance to our standard SMC sampler in terms of the variability, accuracy, and calibration of its posterior
estimates for several light source detection metrics. We find that the waste-free sampler is stable across
several reasonable choices of its mutation kernel parameters M and P , as expected. However, we also
find that the standard sampler is fairly robust to the choice of its mutation kernel parameter k, much
more so than in the three numerical experiments conducted by Dau and Chopin. The performance of
both samplers is quite strong for the class of models considered in this report, and we do not observe
empirical evidence of waste-free SMC’s purported advantage in robustness or variability.
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Figure 5: Accuracy, calibration, and absolute error of posterior mean source counts across 1,500 images

(Error bands indicate middle 90% of bootstrap estimates (left) or middle 90% of images (center and right))

There are several limitations of our analysis that are worth mentioning, both regarding Dau and Chopin’s
work and the constraints we encountered in our transdimensional setting. First, we reiterate that we did
not use the empirical covariance of catalogs from the previous SMC iteration to adapt the covariance of
the Metropolis-Hastings proposals in the current SMC iteration. This is a common technique for many
types of SMC samplers [1, 7]. However, it is not obvious how to implement it in settings like ours where
the latent variables of interest represent sets of light sources; the index of each light source within a
catalog is not necessarily fixed from one iteration to the next, and thus the covariances of the fluxes
and locations between two indexes of a catalog are not directly interpretable. Our approach of fixing
the proposal covariances for the fluxes and locations to a fraction of their respective prior variances is a
reasonable alternative since the prior encodes information about the typical brightness of a star and the
size of the image. We do not anticipate that this decision had a meaningful impact on our results.

Second, since our interest was to establish a baseline comparison between standard and waste-free SMC
in the context of light source detection, we did not explore any of the methodological tweaks proposed by
Dau and Chopin. Specifically, we did not consider their method of adapting the waste-free parameters M
and P based on the autocorrelation of the chains in the mutation step. This extension would potentially
be useful for our waste-free sampler. We observed in our experiments that the acceptance rates of the
Metropolis-Hastings kernels tended to decrease as the number of SMC iterations increased, and Dau and
Chopin recommended the adaptive approach for any problem where mixing deteriorates over time in this
fashion. However, the empirical benefits of this approach would likely be negligible in the experiments
considered above since our waste-free sampler already achieves strong performance.

Finally, recall that we determined the mutation kernel parameters for our experiments by allocating the
same number of likelihood evaluations to the standard and waste-free samplers. This is the approach
taken by Dau and Chopin in their experiments, and it amounts to equating the CPU budgets granted to
the two samplers. However, we implemented our experiments on a GPU, and we found that the runtime
of the waste-free sampler for a given image was nearly double that of the standard sampler, on average.
This is not surprising — although we optimized the waste-free sampler by parallelizing the M chains in
the mutation kernel, the objects being stored and manipulated are much larger for the waste-free sampler
than the standard sampler (on the order of MP for waste-free and N for standard, using the notation
from Table 1). As such, there appears to be no strong statistical or computational argument for using
waste-free SMC instead of standard SMC for the light source detection task considered in this report.
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