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Background

Sequential Monte Carlo (SMC) samplers

π(z) = γ(z)
L : Target density over latent random variables z .

We can evaluate γ(z) at a particular z .
We cannot draw samples from π.

Goal: Sample z1, z2, ... ∼ π(z) so we can approximate Eπ[g(z)].

Approach: Define sequence of auxiliary targets π0 → · · · → πT = π.

1 t = 0: Sample z1:N0 ∼ π0(z) and assign weights w1:N
0 .

2 For t ∈ {1, ...,T}:

1 Resample indices A1:N
t ← resample(N,w 1:N

t−1).

2 Mutate particles z1:Nt ∼ MetropolisHastings(z
A1:N
t

t−1 , dzt).

3 Update weights w 1:N
t of mutated particles.

Output: {z1:NT ,w1:N
T } ∼ π(z).
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Background

SMC samplers for Bayesian latent variable models

Latent z with prior p(z); observed x with likelihood p(x | z).

Target is the posterior: π(z) := p(z | x) = p(z)p(x |z)
p(x) =: γ(z)

L .

Define πt(z) ∝ p(z)p(x | z)τt , where 0 = τ0 < · · · < τT = 1.

1 t = 0: Sample z1:N0 ∼ p(z) and assign weights w1:N
0 .

2 While τt < 1:

1 Increase temperature τt .

2 Resample indices A1:N
t ← resample(N,w 1:N

t−1).

3 Mutate particles z1:Nt ∼ MetropolisHastings(z
A1:N
t

t−1 , dzt).

4 Update weights: w 1:N
t ← p(x | z1:Nt )τt−τt−1 .

Output: {z1:NT ,w1:N
T } ∼ p(z | x).
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Background

Waste-free sequential Monte Carlo

Mutation step is crucial to algorithm’s performance but sensitive to
design of MCMC kernel.

i.e., number of iterations, proposal covariance.

Benefits: (1) ↓ effort required to tune MCMC kernel.
Benefits: (2) ↓ asymptotic variance of Monte Carlo estimates.
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Background

Guiding questions

1 How does waste-free SMC work?
Why is it supposed to have favorable properties?

2 Does it outperform a “standard” SMC sampler on a challenging
transdimensional inference task?

Are its estimates more accurate? Less variable? Is it faster?
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Methods

Detecting light sources in astronomical images

The Messier 53 globular cluster, imaged by SDSS

50 pixel by 50 pixel subregion of Messier 53

Given: Pixelated image of blended light sources.

Goal: Infer source count and properties of each source.
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Methods

Statistical model

Image x with a height of H pixels and a width of W pixels.

Prior

Source count s ∼ Uniform{0, 1, 2, . . . ,D}
Given s, locations u1, . . . , us

iid∼ Uniform
(
[0,H]× [0,W ]

)
➙ Given s, fluxes f1, . . . , fs

iid∼ Normal(µ, σ2)
Catalog z = {s, {uj , fj}sj=1}

Likelihood

Intensity at pixel (h,w) is xhw | z ∼ Poisson(λhw )

λhw = background intensity + sum of fluxes at pixel (h,w)

Posterior p(z | x) ∝ p(z)p(x | z)
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Methods

Standard vs. waste-free SMC samplers

Standard

1 Initialize N catalogs and weights.

2 While τt < 1:

1 Increase temperature.

2 Resample N catalogs.
where N = MP.

3 For i ∈ {1, ...,N}:
Mutate ith catalog k times.
Keep last mutation only.

4 Update weights.

Waste-free

1 Initialize N catalogs and weights.

2 While τt < 1:

1 Increase temperature.

2 Resample M<<N catalogs,
where N = MP.

3 For i ∈ {1, ...,M}:
Mutate ith catalog P−1 times.
Keep all P−1 mutations.

4 Update weights.
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Methods

Several questions

1 Why is it called “waste-free”?

Intermediate mutations are not discarded, and compute is not
wasted on them.

2 Does it have the same theoretical guarantees as standard SMC?

Yes — e.g., unbiased estimate of p(x), posterior estimates are
consistent and asymptotically normal.

3 What value does it add?

Posterior estimates have smaller asymptotic variance under
certain assumptions. Choice of M and P may be more robust
than choice of k.
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Experiment 1

Experiment 1: Variability of posterior estimates

Questions

How variable are SMC estimates across different values of k (standard)
and M and P (waste-free)?
Is waste-free SMC more robust to the choice of M and P than
standard SMC is to the choice of k?

Details

Four 15×15 synthetic images with source count ∈ {2, 4, 6, 8}.
Standard

k N
5 2000
25 400
50 200
100 100
200 50

Waste-free

M P
25 400
50 200
80 125
125 80
200 50

100 runs × 5 parameter combinations × 4 images × 2 methods
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Experiment 1

Four synthetic images

Source count = 2

Source count = 6

Source count = 4

Source count = 8
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Experiment 1

Results: Posterior mean source counts
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Experiment 1

Results: Posterior mean total fluxes

Jaylin Lowe and Tim White Waste-free SMC for light source detection STATS 608



Experiment 1

Results: Posterior mean total fluxes

Jaylin Lowe and Tim White Waste-free SMC for light source detection STATS 608



Experiment 1

Results: Posterior mean total fluxes

Jaylin Lowe and Tim White Waste-free SMC for light source detection STATS 608



Experiment 1

Results: Posterior mean total fluxes

Jaylin Lowe and Tim White Waste-free SMC for light source detection STATS 608



Experiment 1

Results: log p(x)
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Experiment 2

Experiment 2: Calibration of posterior estimates

Questions

How accurate and calibrated are SMC estimates across many images?
Does the waste-free method outperform the standard method?

Details

1500 synthetic images with source count ∈ {0, 1, 2, ..., 8}.
Standard: k = 100 and N = 100
Waste free: M = 80 and P = 125
1 run × 1 parameter combination × 1500 images × 2 methods
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Experiment 2

Results: Accuracy of posterior mean source counts
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Results: Calibration of posterior mean source counts
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Experiment 2

Results: MAE of posterior mean source counts
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Discussion

Closing thoughts

Takeaway
Waste-free resampling and mutation does not help (or hurt) much for
this inference task.

Possible explanations

1 Our SMC samplers are tailored to object detection.

Catalogs stratified by source count to avoid transdimensional sampling.

2 We used fixed proposal variances in the mutation step.

Could be adapted, but not obvious how to do this in this setting.

3 Original paper focused on long-chain setting (small M, large P).

Advantages of waste-free procedure may be exaggerated.
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Discussion

Thank you!
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Results: Runtime
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