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Sequential Monte Carlo (SMC) samplers

o m(z) = @: Target density over latent random variables z.

o We can evaluate y(z) at a particular z.
o We cannot draw samples from 7.
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Sequential Monte Carlo (SMC) samplers

o m(z) = @: Target density over latent random variables z.

o We can evaluate y(z) at a particular z.
o We cannot draw samples from 7.

e Goal: Sample z1, z, ... ~ 7(z) so we can approximate E;[g(z)].

@ Approach: Define sequence of auxiliary targets m9 — - — 71 = 7.

Q t =0: Sample zt'N ~ 7o(z) and assign weights wiV.

Q Forte{l,., T}

@ Resample indices AFN < resample(N, wi™).
H 1N . A A%:N
@ Mutate particles z'" ~ MetropolisHastings(z, ", ,dz).
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Sequential Monte Carlo (SMC) samplers

o m(z) = @: Target density over latent random variables z.

o We can evaluate y(z) at a particular z.
o We cannot draw samples from 7.

e Goal: Sample z1, z, ... ~ 7(z) so we can approximate E;[g(z)].

@ Approach: Define sequence of auxiliary targets m9 — - — 71 = 7.

Q t =0: Sample zt'N ~ 7o(z) and assign weights wiV.

Q Forte{l,., T}

@ Resample indices AFN < resample(N, wi™).
1:N
@ Mutate particles zF'N ~ MetropolisHastings(z,_LA_‘1 ,dze).
© Update weights wi™V of mutated particles.
e Output: {zFN wiN} ~ 7(z2).
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SMC samplers for Bayesian latent variable models

@ Latent z with prior p(z); observed x with likelihood p(x | z).
@ Target is the posterior: 7(z) := p(z | x) = % : %
o Define m(z) p(z)p(x | z)™, where 0 =19 < --- <77 =1.

Q t=0: Sample zF*N ~ p(z) and assign weights wV.
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Background

SMC samplers for Bayesian latent variable models

@ Latent z with prior p(z); observed x with likelihood p(x | z).

o Target is the posterior: 7(z) ;= p(z | x) = % : %

o Define m(z) o p(z)p(x | z), where 0 =79 < --- < 77 = 1.

Q t=0: Sample z}'N ~ p(z) and assign weights waV.
Q While 7, < 1:
@ Increase temperature ;.

@ Resample indices A}" < resample(N, w;™).

) 1N
© | Mutate particles z7'" ~ MetropolisHastings(ztA_f1 ,dzt).

O Update weights: wV « p(x | z-V) e =71,

o Output: {z¥N wiN} ~ p(z | x).
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Background

Waste-free sequential Monte Carlo

@ Mutation step is crucial to algorithm's performance but sensitive to
design of MCMC kernel.

o i.e., number of iterations, proposal covariance.
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A standard way to move particles in a sequential Monte
Carlo (SMC) sampler is to apply several steps of a
Markov chain Monte Carlo (MCMC) kernel. Unfortu-
nately, it is not clear how many steps need to be per-
formed for optimal performance. In addition, the output
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© How does waste-free SMC work?
o Why is it supposed to have favorable properties?
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Background

Guiding questions

© How does waste-free SMC work?
o Why is it supposed to have favorable properties?

© Does it outperform a “standard” SMC sampler on a challenging
transdimensional inference task?

o Are its estimates more accurate? Less variable? Is it faster?
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Methods
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Detecting light sources in astronomical images

The Messier 53 globular cluster, imaged by SDSS

Jaylin Lowe and Tim White Waste-free SMC for light source detection STATS 608



Detecting light sources in astronomical images

The Messier 53 globular cluster, imaged by SDSS 50 pixel by 50 pixel subregion of Messier 53

Jaylin Lowe and Tim White Waste-free SMC for light source detection STATS 608



Detecting light sources in astronomical images

The Messier 53 globular cluster, imaged by SDSS 50 pixel by 50 pixel subregion of Messier 53

o Given: Pixelated image of blended light sources.

Goal: Infer source count and properties of each source.
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Statistical model

o Image x with a height of H pixels and a width of W pixels.
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Statistical model

o Image x with a height of H pixels and a width of W pixels.

@ Prior
e Source count s ~ Uniform{0,1,2,... . D}
o Given s, locations uy, ..., us Uniform ([0, H] x [0, W1])
fluxes fiy o S Normal(j, 02)

o Catalog z = {s, {u;,fi};_;}

o Likelihood

o Intensity at pixel (h, w) is xpy, | z ~ Poisson(Apy)
@ Mpw = background intensity + sum of fluxes at pixel (h, w)

e Posterior p(z | x) «x p(z)p(x | z)
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Standard vs. waste-free SMC samplers

Standard

@ Initialize N catalogs and weights.
Q@ While » < 1:
@ |Increase temperature.

@ Resample N catalogs.

© Forie{l, .. N}
Mutate ith catalog k times.
Keep last mutation only.

@ Update weights.
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Standard vs. waste-free SMC samplers

Standard

@ Initialize N catalogs and weights.
Q@ While » < 1:
@ |Increase temperature.

@ Resample N catalogs.

© Forie{l, .. N}
Mutate ith catalog k times.
Keep last mutation only.

@ Update weights.

Waste-free

@ |Initialize N catalogs and weights.
Q While 1 < 1:
@ Increase temperature.

@ Resample M<<N catalogs,
where N = MP.

@ Forie{l, .. M}:
Mutate ith catalog P—1 times.
Keep all P—1 mutations.

@ Update weights.
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Several questions

@ Why is it called “waste-free”?
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Several questions

Q@ Why is it called "waste-free”?

o Intermediate mutations are not discarded, and compute is not
wasted on them.

@ Does it have the same theoretical guarantees as standard SMC?

e Yes — e.g., unbiased estimate of p(x), posterior estimates are
consistent and asymptotically normal.

© What value does it add?

o Posterior estimates have smaller asymptotic variance under
certain assumptions. Choice of M and P may be more robust
than choice of k.
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Experiment 1: Variability of posterior estimates

@ Questions
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Experiment 1: Variability of posterior estimates

@ Questions

o How variable are SMC estimates across different values of k (standard)
and M and P (waste-free)?
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Experiment 1: Variability of posterior estimates

@ Questions

o How variable are SMC estimates across different values of k (standard)
and M and P (waste-free)?

o |s waste-free SMC more robust to the choice of M and P than
standard SMC is to the choice of k7
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Experiment 1: Variability of posterior estimates

@ Questions

o How variable are SMC estimates across different values of k (standard)
and M and P (waste-free)?

o |s waste-free SMC more robust to the choice of M and P than
standard SMC is to the choice of k7

@ Details
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Experiment 1

Experiment 1: Variability of posterior estimates

@ Questions
o How variable are SMC estimates across different values of k (standard)

and M and P (waste-free)?
o Is waste-free SMC more robust to the choice of M and P than

standard SMC is to the choice of k?

@ Details
o Four 15x15 synthetic images with source count € {2, 4,6, 8}.

Standard Waste-free
k N M P

5 2000 25 400
25 400 50 | 200
50 200 80 125
100 100 125 80
200 50 200 | 50
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Experiment 1

Experiment 1: Variability of posterior estimates

@ Questions
o How variable are SMC estimates across different values of k (standard)

and M and P (waste-free)?
o Is waste-free SMC more robust to the choice of M and P than

standard SMC is to the choice of k?

@ Details

o Four 15x15 synthetic images with source count € {2, 4,6, 8}.

Standard Waste-free
k N M P

5 2000 25 400
25 400 50 | 200
50 200 80 125
100 100 125 80
200 50 200 | 50

e 100 runs x 5 parameter combinations x 4 images x 2 methods
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Four synthetic images

Source count = 2 Source count = 4

Source count = 6 Source count = 8
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Results: Posterior mean source counts

True source count: 2
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Experime

Results: Posterior mean source counts
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Results: Posterior mean total fluxes
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Experi

Results: Posterior mean total fluxes
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Results: Posterior mean total fluxes
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Results: log p(x)
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Experiment 2

Experiment 2: Calibration of posterior estimates

@ Questions
o How accurate and calibrated are SMC estimates across many images?
o Does the waste-free method outperform the standard method?

@ Details

1500 synthetic images with source count € {0,1,2,...,8}.
Standard: k = 100 and N = 100

Waste free: M =80 and P =125

1 run x 1 parameter combination x 1500 images x 2 methods
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Experiment 2

Results: Accuracy of posterior mean source counts
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Experiment 2

Results: MAE of posterior mean source counts
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Closing thoughts

@ Takeaway

o Waste-free resampling and mutation does not help (or hurt) much for
this inference task.
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Closing thoughts

@ Takeaway

o Waste-free resampling and mutation does not help (or hurt) much for
this inference task.

@ Possible explanations
@ Our SMC samplers are tailored to object detection.
o Catalogs stratified by source count to avoid transdimensional sampling.

@ We used fixed proposal variances in the mutation step.
o Could be adapted, but not obvious how to do this in this setting.

© Original paper focused on long-chain setting (small M, large P).
@ Advantages of waste-free procedure may be exaggerated.
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Discussion

Thank you!
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Results: Runtime
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