Waste-free sequential Monte Carlo for light source detection in astronomical images

Jaylin Lowe and Tim White

STATS 608 final project

April 22nd, 2024

Jaylin Lowe and Tim White

Waste-free SMC for light source detection

STATS 608

Background

Jaylin Lowe and Tim White

Waste-free SMC for light source detection

STATS 608

< ≣ > < ≣ > ⊂ ≣ · ∽ <

- $\pi(z) = \frac{\gamma(z)}{L}$: Target density over latent random variables z.
 - We can evaluate $\gamma(z)$ at a particular z.
 - We <u>cannot</u> draw samples from π .

- $\pi(z) = \frac{\gamma(z)}{L}$: Target density over latent random variables z.
 - We can evaluate $\gamma(z)$ at a particular z.
 - We <u>cannot</u> draw samples from π .
- Goal: Sample $z_1, z_2, ... \sim \pi(z)$ so we can approximate $E_{\pi}[g(z)]$.

- $\pi(z) = \frac{\gamma(z)}{L}$: Target density over latent random variables z.
 - We can evaluate $\gamma(z)$ at a particular z.
 - We <u>cannot</u> draw samples from π .
- Goal: Sample $z_1, z_2, ... \sim \pi(z)$ so we can approximate $E_{\pi}[g(z)]$.
- Approach: Define sequence of auxiliary targets $\pi_0 \rightarrow \cdots \rightarrow \pi_T = \pi$.

- $\pi(z) = \frac{\gamma(z)}{L}$: Target density over latent random variables z.
 - We can evaluate $\gamma(z)$ at a particular z.
 - We <u>cannot</u> draw samples from π .
- Goal: Sample $z_1, z_2, ... \sim \pi(z)$ so we can approximate $E_{\pi}[g(z)]$.
- Approach: Define sequence of auxiliary targets $\pi_0 \rightarrow \cdots \rightarrow \pi_T = \pi$.
 - t = 0: Sample $z_0^{1:N} \sim \pi_0(z)$ and assign weights $w_0^{1:N}$.

- $\pi(z) = \frac{\gamma(z)}{L}$: Target density over latent random variables z.
 - We can evaluate $\gamma(z)$ at a particular z.
 - We <u>cannot</u> draw samples from π .
- Goal: Sample $z_1, z_2, ... \sim \pi(z)$ so we can approximate $E_{\pi}[g(z)]$.
- Approach: Define sequence of auxiliary targets $\pi_0 \rightarrow \cdots \rightarrow \pi_T = \pi$.
 - t = 0: Sample $z_0^{1:N} \sim \pi_0(z)$ and assign weights $w_0^{1:N}$.
 - **2** For $t \in \{1, ..., T\}$:

- $\pi(z) = \frac{\gamma(z)}{L}$: Target density over latent random variables z.
 - We can evaluate $\gamma(z)$ at a particular z.
 - We <u>cannot</u> draw samples from π .
- Goal: Sample $z_1, z_2, ... \sim \pi(z)$ so we can approximate $E_{\pi}[g(z)]$.
- Approach: Define sequence of auxiliary targets $\pi_0 \rightarrow \cdots \rightarrow \pi_T = \pi$.
 - t = 0: Sample $z_0^{1:N} \sim \pi_0(z)$ and assign weights $w_0^{1:N}$.

2 For
$$t \in \{1, ..., T\}$$
:

Q Resample indices $A_t^{1:N} \leftarrow \text{resample}(N, w_{t-1}^{1:N})$.

- $\pi(z) = \frac{\gamma(z)}{L}$: Target density over latent random variables z.
 - We can evaluate $\gamma(z)$ at a particular z.
 - We <u>cannot</u> draw samples from π .
- Goal: Sample $z_1, z_2, ... \sim \pi(z)$ so we can approximate $E_{\pi}[g(z)]$.
- Approach: Define sequence of auxiliary targets $\pi_0 \rightarrow \cdots \rightarrow \pi_T = \pi$.
 - t = 0: Sample $z_0^{1:N} \sim \pi_0(z)$ and assign weights $w_0^{1:N}$.

2 For
$$t \in \{1, ..., T\}$$
:

- **Q** Resample indices $A_t^{1:N} \leftarrow \text{resample}(N, w_{t-1}^{1:N})$.
- **2** Mutate particles $z_t^{1:N} \sim \text{MetropolisHastings}(z_{t-1}^{A_t^{1:N}}, dz_t)$.

- $\pi(z) = \frac{\gamma(z)}{L}$: Target density over latent random variables z.
 - We can evaluate $\gamma(z)$ at a particular z.
 - We <u>cannot</u> draw samples from π .
- Goal: Sample $z_1, z_2, ... \sim \pi(z)$ so we can approximate $E_{\pi}[g(z)]$.
- Approach: Define sequence of auxiliary targets $\pi_0 \rightarrow \cdots \rightarrow \pi_T = \pi$.
 - t = 0: Sample $z_0^{1:N} \sim \pi_0(z)$ and assign weights $w_0^{1:N}$.

2 For
$$t \in \{1, ..., T\}$$
:

O Resample indices $A_t^{1:N} \leftarrow \text{resample}(N, w_{t-1}^{1:N})$.

- **Q** Mutate particles $z_t^{1:N} \sim \text{MetropolisHastings}(z_{t-1}^{A_t^{1:N}}, dz_t)$.
- **Output** Update weights $w_t^{1:N}$ of mutated particles.

- $\pi(z) = \frac{\gamma(z)}{L}$: Target density over latent random variables z.
 - We can evaluate $\gamma(z)$ at a particular z.
 - We <u>cannot</u> draw samples from π .
- Goal: Sample $z_1, z_2, ... \sim \pi(z)$ so we can approximate $E_{\pi}[g(z)]$.
- Approach: Define sequence of auxiliary targets $\pi_0 \rightarrow \cdots \rightarrow \pi_T = \pi$.
 - t = 0: Sample $z_0^{1:N} \sim \pi_0(z)$ and assign weights $w_0^{1:N}$.

2 For
$$t \in \{1, ..., T\}$$
:

- **O** Resample indices $A_t^{1:N} \leftarrow \text{resample}(N, w_{t-1}^{1:N})$.
- **2** Mutate particles $z_t^{1:N} \sim \text{MetropolisHastings}(z_{t-1}^{A_t^{1:N}}, dz_t)$.
- **O Update weights** $w_t^{1:N}$ of mutated particles.

• **Output:**
$$\{z_T^{1:N}, w_T^{1:N}\} \sim \pi(z).$$

• Latent z with prior p(z); observed x with likelihood p(x | z).

Jaylin Lowe and Tim White

Waste-free SMC for light source detection

STATS 608

- Latent z with prior p(z); observed x with likelihood p(x | z).
- Target is the posterior: $\pi(z) := p(z \mid x) = \frac{p(z)p(x|z)}{p(x)} =: \frac{\gamma(z)}{L}$.

- Latent z with prior p(z); observed x with likelihood p(x | z).
- Target is the posterior: $\pi(z) := p(z \mid x) = \frac{p(z)p(x|z)}{p(x)} =: \frac{\gamma(z)}{L}$.
- Define $\pi_t(z) \propto p(z)p(x \mid z)^{\tau_t}$, where $0 = \tau_0 < \cdots < \tau_T = 1$.

- Latent z with prior p(z); observed x with likelihood p(x | z).
- Target is the posterior: $\pi(z) := p(z \mid x) = \frac{p(z)p(x|z)}{p(x)} =: \frac{\gamma(z)}{L}$.
- Define $\pi_t(z) \propto p(z)p(x \mid z)^{\tau_t}$, where $0 = \tau_0 < \cdots < \tau_T = 1$.
 - t = 0: Sample $z_0^{1:N} \sim p(z)$ and assign weights $w_0^{1:N}$.

- Latent z with prior p(z); observed x with likelihood p(x | z).
- Target is the posterior: $\pi(z) := p(z \mid x) = \frac{p(z)p(x|z)}{p(x)} =: \frac{\gamma(z)}{L}$.
- Define $\pi_t(z) \propto p(z)p(x \mid z)^{\tau_t}$, where $0 = \tau_0 < \cdots < \tau_T = 1$.
 - t = 0: Sample $z_0^{1:N} \sim p(z)$ and assign weights $w_0^{1:N}$.
 - **2** While $\tau_t < 1$:

- Latent z with prior p(z); observed x with likelihood p(x | z).
- Target is the posterior: $\pi(z) := p(z \mid x) = \frac{p(z)p(x|z)}{p(x)} =: \frac{\gamma(z)}{L}$.
- Define $\pi_t(z) \propto p(z)p(x \mid z)^{\tau_t}$, where $0 = \tau_0 < \cdots < \tau_T = 1$.
 - t = 0: Sample $z_0^{1:N} \sim p(z)$ and assign weights $w_0^{1:N}$.
 - 2 While $\tau_t < 1$:
 - **1** Increase temperature τ_t .

- Latent z with prior p(z); observed x with likelihood p(x | z).
- Target is the posterior: $\pi(z) := p(z \mid x) = \frac{p(z)p(x|z)}{p(x)} =: \frac{\gamma(z)}{L}$.
- Define $\pi_t(z) \propto p(z)p(x \mid z)^{\tau_t}$, where $0 = \tau_0 < \cdots < \tau_T = 1$.
 - t = 0: Sample $z_0^{1:N} \sim p(z)$ and assign weights $w_0^{1:N}$.
 - 2 While $\tau_t < 1$:
 - **1** Increase temperature τ_t .
 - **Q** Resample indices $A_t^{1:N} \leftarrow \text{resample}(N, w_{t-1}^{1:N})$.

- Latent z with prior p(z); observed x with likelihood p(x | z).
- Target is the posterior: $\pi(z) := p(z \mid x) = \frac{p(z)p(x|z)}{p(x)} =: \frac{\gamma(z)}{L}$.
- Define $\pi_t(z) \propto p(z)p(x \mid z)^{\tau_t}$, where $0 = \tau_0 < \cdots < \tau_T = 1$.
 - t = 0: Sample $z_0^{1:N} \sim p(z)$ and assign weights $w_0^{1:N}$.
 - 2 While $\tau_t < 1$:
 - **1** Increase temperature τ_t .
 - **Q** Resample indices $A_t^{1:N} \leftarrow \text{resample}(N, w_{t-1}^{1:N})$.

• Mutate particles $z_t^{1:N} \sim \text{MetropolisHastings}(z_{t-1}^{A_t^{1:N}}, dz_t)$.

Jaylin Lowe and Tim White

< □ ▶ < 母 ▶ < 差 ▶ < 差 ▶ 差 の Q @ on STATS 608

- Latent z with prior p(z); observed x with likelihood p(x | z).
- Target is the posterior: $\pi(z) := p(z \mid x) = \frac{p(z)p(x|z)}{p(x)} =: \frac{\gamma(z)}{L}$.
- Define $\pi_t(z) \propto p(z)p(x \mid z)^{\tau_t}$, where $0 = \tau_0 < \cdots < \tau_T = 1$.
 - t = 0: Sample $z_0^{1:N} \sim p(z)$ and assign weights $w_0^{1:N}$.
 - 2 While $\tau_t < 1$:
 - **1** Increase temperature τ_t .
 - **Q** Resample indices $A_t^{1:N} \leftarrow \text{resample}(N, w_{t-1}^{1:N})$.

• Mutate particles $z_t^{1:N} \sim \text{MetropolisHastings}(z_{t-1}^{A_t^{1:N}}, dz_t)$.

O Update weights:
$$w_t^{1:N} \leftarrow p(x \mid z_t^{1:N})^{\tau_t - \tau_{t-1}}$$
.

Jaylin Lowe and Tim White

- Latent z with prior p(z); observed x with likelihood p(x | z).
- Target is the posterior: $\pi(z) := p(z \mid x) = \frac{p(z)p(x|z)}{p(x)} =: \frac{\gamma(z)}{L}$.
- Define $\pi_t(z) \propto p(z)p(x \mid z)^{\tau_t}$, where $0 = \tau_0 < \cdots < \tau_T = 1$.
 - t = 0: Sample $z_0^{1:N} \sim p(z)$ and assign weights $w_0^{1:N}$.
 - 2 While $\tau_t < 1$:
 - **1** Increase temperature τ_t .
 - **Q** Resample indices $A_t^{1:N} \leftarrow \text{resample}(N, w_{t-1}^{1:N})$.
 - Mutate particles $z_t^{1:N} \sim \text{MetropolisHastings}(z_{t-1}^{A_t^{1:N}}, dz_t)$.
 - **OUDDATE weights:** $w_t^{1:N} \leftarrow p(x \mid z_t^{1:N})^{\tau_t \tau_{t-1}}$.

• **Output:**
$$\{z_T^{1:N}, w_T^{1:N}\} \sim p(z \mid x)$$
.

Waste-free sequential Monte Carlo

- Mutation step is crucial to algorithm's performance but sensitive to design of MCMC kernel.
 - i.e., number of iterations, proposal covariance.

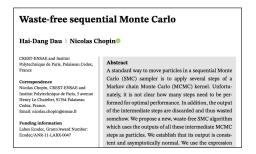
Waste-free sequential Monte Carlo

- Mutation step is crucial to algorithm's performance but sensitive to design of MCMC kernel.
 - i.e., number of iterations, proposal covariance.

Waste-free sequential Monte Carlo	
Hai-Dang Dau Nicolas Chopin©	
CREST-ENSAE and Institut Polytechnique de Paris, Palaiseau Cedex, France	Abstract A standard way to move particles in a sequential Monte
Prance Correspondence Nicolas Chopin, CREST-ENSAE and Institut Polytechnique de Paris, 5 avenue Henry Le Chatelier, 91764 Palaiseau Cedex, France. Email: nicolas.chopin@ensae.fr	A standard way to move particles in a sequential Monte Carlo (SMC) sampler is to apply several steps of a Markov chain Monte Carlo (MCMC) kernel. Unfortu- nately, it is not clear how many steps need to be per- formed for optimal performance. In addition, the output of the intermediate steps are discarded and thus wasted
Funding information Labex Ecodec, Grant/Award Number: Ecodec/ANR-11-LABX-0047	somehow. We propose a new, waste-free SMC algorithm which uses the outputs of all these intermediate MCMC steps as particles. We establish that its output is consis- tent and asymptotically normal. We use the expression

Waste-free sequential Monte Carlo

- Mutation step is crucial to algorithm's performance but sensitive to design of MCMC kernel.
 - i.e., number of iterations, proposal covariance.



Benefits: (1) ↓ effort required to tune MCMC kernel.
 (2) ↓ asymptotic variance of Monte Carlo estimates.

・ロト ・ 同ト ・ ヨト ・ ヨト

Guiding questions

I How does waste-free SMC work?

• Why is it supposed to have favorable properties?

Guiding questions

I How does waste-free SMC work?

• Why is it supposed to have favorable properties?

Obes it outperform a "standard" SMC sampler on a challenging transdimensional inference task?

• Are its estimates more accurate? Less variable? Is it faster?

Jaylin Lowe and Tim White

Waste-free SMC for light source detection

STATS 608

Methods

Jaylin Lowe and Tim White

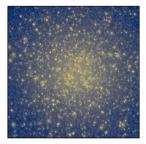
Waste-free SMC for light source detection

■ → < ■ →</p>
STATS 608

 \exists

Image: A matrix and a matrix

Detecting light sources in astronomical images



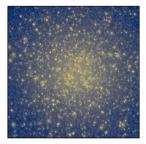
The Messier 53 globular cluster, imaged by SDSS

Jaylin Lowe and Tim White

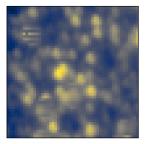
Waste-free SMC for light source detection

STATS 608

Detecting light sources in astronomical images



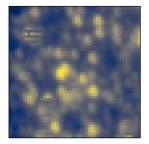
The Messier 53 globular cluster, imaged by SDSS



50 pixel by 50 pixel subregion of Messier 53

Detecting light sources in astronomical images

The Messier 53 globular cluster, imaged by SDSS



50 pixel by 50 pixel subregion of Messier 53

• Given: Pixelated image of blended light sources.

Goal: Infer source count and properties of each source.

• Image x with a height of H pixels and a width of W pixels.

Jaylin Lowe and Tim White

Waste-free SMC for light source detection

■ ► < ■ ►</p>
STATS 608

 \exists

- Image x with a height of H pixels and a width of W pixels.
- Prior

Jaylin Lowe and Tim White

Waste-free SMC for light source detection

STATS 608

< A > <

 \exists

- Image x with a height of H pixels and a width of W pixels.
- Prior
 - Source count $s \sim \text{Uniform}\{0, 1, 2, \dots, D\}$

◆ 伊 ▶ ◆ 臣 ▶ ◆ 臣 ▶ …

• Image x with a height of H pixels and a width of W pixels.

• Prior

- Source count $s \sim \text{Uniform}\{0, 1, 2, \dots, D\}$
- Given *s*, locations $u_1, \ldots, u_s \stackrel{\text{iid}}{\sim} \text{Uniform}([0, H] \times [0, W])$ fluxes $f_1, \ldots, f_s \stackrel{\text{iid}}{\sim} \text{Normal}(\mu, \sigma^2)$

• Image x with a height of H pixels and a width of W pixels.

• Prior

- Source count $s \sim \text{Uniform}\{0, 1, 2, \dots, D\}$
- Given s, locations $u_1, \ldots, u_s \stackrel{\text{iid}}{\sim} \text{Uniform}([0, H] \times [0, W])$

fluxes $f_1, \ldots, f_s \stackrel{\text{iid}}{\sim} \text{Normal}(\mu, \sigma^2)$ • Catalog $z = \{s, \{u_i, f_i\}_{i=1}^s\}$

• Image x with a height of H pixels and a width of W pixels.

• Prior

- Source count $s \sim \text{Uniform}\{0, 1, 2, \dots, D\}$
- Given s, locations $u_1, \ldots, u_s \stackrel{\text{iid}}{\sim} \text{Uniform}([0, H] \times [0, W])$

fluxes $f_1, \ldots, f_s \stackrel{\text{iid}}{\sim} \text{Normal}(\mu, \sigma^2)$ • Catalog $z = \{s, \{u_j, f_j\}_{j=1}^s\}$

• Likelihood

1

Statistical model

• Image x with a height of H pixels and a width of W pixels.

• Prior

- Source count $s \sim \text{Uniform}\{0, 1, 2, \dots, D\}$
- Given *s*, locations $u_1, \ldots, u_s \stackrel{\text{iid}}{\sim} \text{Uniform}([0, H] \times [0, W])$

fluxes $f_1, \ldots, f_s \stackrel{\text{iid}}{\sim} \text{Normal}(\mu, \sigma^2)$ • Catalog $z = \{s, \{u_j, f_j\}_{j=1}^s\}$

• Likelihood

- Intensity at pixel (h, w) is x_{hw} | z ~ Poisson(λ_{hw})
 - $\lambda_{hw} = \text{background intensity} + \text{sum of fluxes at pixel } (h, w)$

▲ 同 ▶ ▲ 目 ▶ ▲ 目 ▶ ……

Statistical model

• Image x with a height of H pixels and a width of W pixels.

• Prior

- Source count $s \sim \text{Uniform}\{0, 1, 2, \dots, D\}$
- Given s, locations $u_1, \ldots, u_s \stackrel{\text{iid}}{\sim} \mathsf{Uniform}([0, H] \times [0, W])$

fluxes $f_1, \ldots, f_s \stackrel{\text{iid}}{\sim} \text{Normal}(\mu, \sigma^2)$ • Catalog $z = \{s, \{u_j, f_j\}_{j=1}^s\}$

• Likelihood

Intensity at pixel (h, w) is x_{hw} | z ~ Poisson(λ_{hw})

• $\lambda_{hw} = \text{background intensity} + \text{sum of fluxes at pixel } (h, w)$

• Posterior $p(z \mid x) \propto p(z)p(x \mid z)$

Standard vs. waste-free SMC samplers

Standard

- Initialize N catalogs and weights.
- **2** While $\tau_t < 1$:
 - Increase temperature.
 - Resample N catalogs.
 - For i ∈ {1,..., N}: Mutate ith catalog k times. Keep last mutation only.
 - Update weights.

Standard vs. waste-free SMC samplers

Standard

- Initialize N catalogs and weights.
- **2** While $\tau_t < 1$:
 - Increase temperature.
 - Resample N catalogs.
 - For $i \in \{1, ..., N\}$: Mutate *i*th catalog *k* times. Keep last mutation only.
 - Update weights.

Waste-free

- Initialize N catalogs and weights.
- 2 While $\tau_t < 1$:
 - Increase temperature.
 - Resample M << N catalogs, where N = MP.
 - For i ∈ {1,..., M}: Mutate ith catalog P−1 times. Keep all P−1 mutations.

・ コ ト ・ 雪 ト ・ 雪 ト ・ ヨ ト

Update weights.

• Why is it called "waste-free"?

Jaylin Lowe and Tim White

Waste-free SMC for light source detection

STATS 608

3

- Why is it called "waste-free"?
 - Intermediate mutations are not discarded, and compute is not wasted on them.

• • = • • = •

- Why is it called "waste-free"?
 - Intermediate mutations are not discarded, and compute is not wasted on them.
- ② Does it have the same theoretical guarantees as standard SMC?

- Why is it called "waste-free"?
 - Intermediate mutations are not discarded, and compute is not wasted on them.
- ② Does it have the same theoretical guarantees as standard SMC?
 - Yes e.g., unbiased estimate of p(x), posterior estimates are consistent and asymptotically normal.

- Why is it called "waste-free"?
 - Intermediate mutations are not discarded, and compute is not wasted on them.
- Does it have the same theoretical guarantees as standard SMC?
 Yes e.g., unbiased estimate of p(x), posterior estimates are
 - res e.g., unbiased estimate of p(x), posterior estimates are consistent and asymptotically normal.
- What value does it add?

- Why is it called "waste-free"?
 - Intermediate mutations are not discarded, and compute is not wasted on them.
- Does it have the same theoretical guarantees as standard SMC?
 Yes e.g., unbiased estimate of p(x), posterior estimates are consistent and asymptotically normal.
- What value does it add?
 - Posterior estimates have smaller asymptotic variance under certain assumptions. Choice of M and P may be more robust than choice of k.

Experiment 1

Jaylin Lowe and Tim White

Waste-free SMC for light source detection

STATS 608

◆玉▶ ◆玉▶ 玉 ∽への

• Questions

Jaylin Lowe and Tim White

Waste-free SMC for light source detection

STATS 608

• Questions

• How variable are SMC estimates across different values of k (standard) and M and P (waste-free)?

• Questions

- How variable are SMC estimates across different values of k (standard) and M and P (waste-free)?
- Is waste-free SMC more robust to the choice of *M* and *P* than standard SMC is to the choice of *k*?

• Questions

- How variable are SMC estimates across different values of k (standard) and M and P (waste-free)?
- Is waste-free SMC more robust to the choice of *M* and *P* than standard SMC is to the choice of *k*?
- Details

Questions

- How variable are SMC estimates across different values of k (standard) and M and P (waste-free)?
- Is waste-free SMC more robust to the choice of M and P than standard SMC is to the choice of k?

Details

• Four 15×15 synthetic images with source count $\in \{2, 4, 6, 8\}$.

Standard		
k	N	
5	2000	
25	400	
50	200	
100	100	
200	50	

Chandrand

Waste-free

М	Р
25	400
50	200
80	125
125	80
200	50

• Questions

- How variable are SMC estimates across different values of k (standard) and M and P (waste-free)?
- Is waste-free SMC more robust to the choice of *M* and *P* than standard SMC is to the choice of *k*?

• Details

• Four 15×15 synthetic images with source count \in {2,4,6,8}.

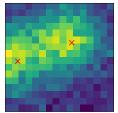
Waste-free

М	Р
25	400
50	200
80	125
125	80
200	50

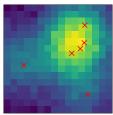
 $\bullet~100~\text{runs}~\times~5$ parameter combinations $\times~4~\text{images}~\times~2$ methods

Four synthetic images

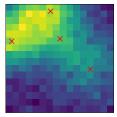
Source count = 2



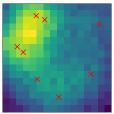
Source count = 6



Source count = 4



Source count = 8



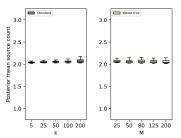
Jaylin Lowe and Tim White

Waste-free SMC for light source detection

STATS 608

3

(4 同) (4 回) (4 回)



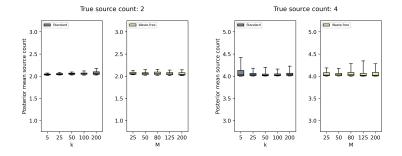
True source count: 2

Jaylin Lowe and Tim White

Waste-free SMC for light source detection

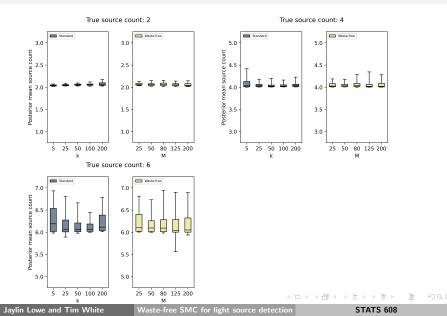
STATS 608

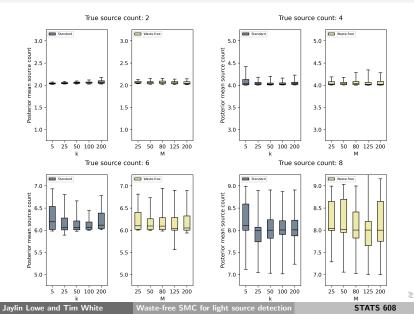
3

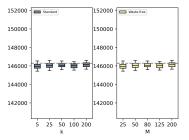


Waste-free SMC for light source detection

STATS 608







True source count: 2

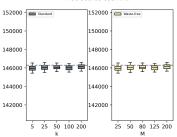
Jaylin Lowe and Tim White

Waste-free SMC for light source detection

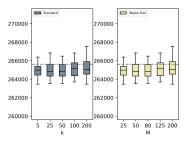
STATS 608

3

・ 同 ト ・ ヨ ト ・ ヨ ト

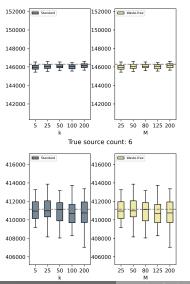


True source count: 2

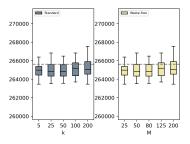


True source count: 4

True source count: 2



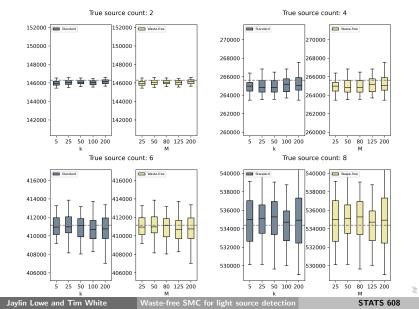
True source count: 4

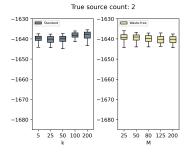


Jaylin Lowe and Tim White

Waste-free SMC for light source detection

STATS 608



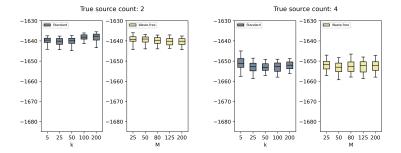


Waste-free SMC for light source detection

STATS 608

3

・ 同 ト ・ ヨ ト ・ ヨ ト

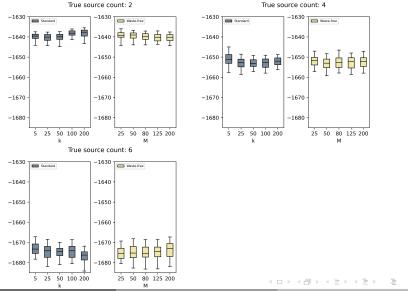


Waste-free SMC for light source detection

STATS 608

3

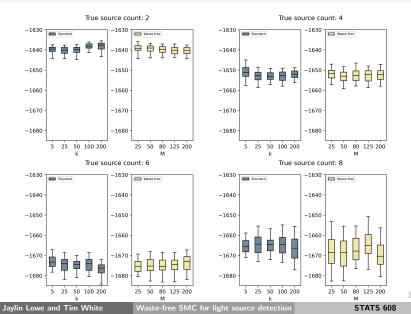
・ 同 ト ・ ヨ ト ・ ヨ ト



Jaylin Lowe and Tim White

Waste-free SMC for light source detection

STATS 608



Experiment 2

Jaylin Lowe and Tim White

Waste-free SMC for light source detection

STATS 608

▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 → 今 � �

Questions

Jaylin Lowe and Tim White Waste-free SMC for light source detection

STATS 608

3

• Questions

• How accurate and calibrated are SMC estimates across many images?

• Questions

- How accurate and calibrated are SMC estimates across many images?
- Does the waste-free method outperform the standard method?

• Questions

- How accurate and calibrated are SMC estimates across many images?
- Does the waste-free method outperform the standard method?

• Details

• Questions

- How accurate and calibrated are SMC estimates across many images?
- Does the waste-free method outperform the standard method?

• Details

• 1500 synthetic images with source count $\in \{0, 1, 2, ..., 8\}$.

Experiment 2: Calibration of posterior estimates

• Questions

- How accurate and calibrated are SMC estimates across many images?
- Does the waste-free method outperform the standard method?

• Details

- 1500 synthetic images with source count $\in \{0, 1, 2, ..., 8\}$.
- Standard: k = 100 and N = 100

Experiment 2: Calibration of posterior estimates

• Questions

- How accurate and calibrated are SMC estimates across many images?
- Does the waste-free method outperform the standard method?

• Details

- 1500 synthetic images with source count $\in \{0, 1, 2, ..., 8\}$.
- Standard: k = 100 and N = 100
- Waste free: M = 80 and P = 125

Experiment 2: Calibration of posterior estimates

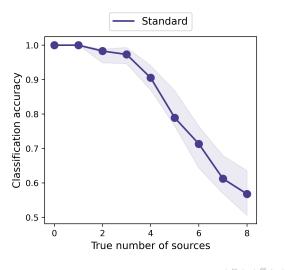
• Questions

- How accurate and calibrated are SMC estimates across many images?
- Does the waste-free method outperform the standard method?

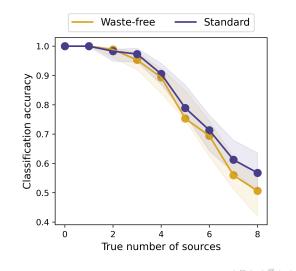
• Details

- 1500 synthetic images with source count $\in \{0, 1, 2, ..., 8\}$.
- Standard: k = 100 and N = 100
- Waste free: M = 80 and P = 125
- $\bullet~1$ run $\times~1$ parameter combination $\times~1500$ images $\times~2$ methods

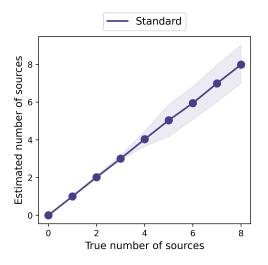
Results: Accuracy of posterior mean source counts



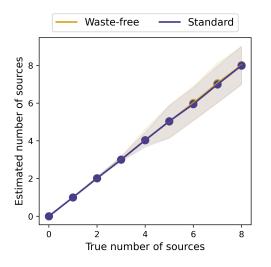
Results: Accuracy of posterior mean source counts



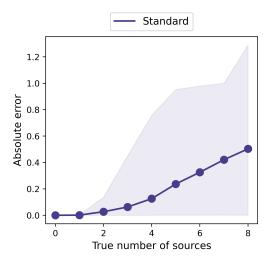
Results: Calibration of posterior mean source counts



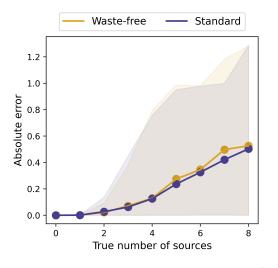
Results: Calibration of posterior mean source counts



Results: MAE of posterior mean source counts



Results: MAE of posterior mean source counts



Jaylin Lowe and Tim White

Waste-free SMC for light source detection

Discussion

Jaylin Lowe and Tim White

Waste-free SMC for light source detection

STATS 608

< ロ > < 団 > < 臣 > < 臣 > 三 の < ()</p>

• Takeaway

• Waste-free resampling and mutation does not help (or hurt) much for this inference task.

A (1)

3

• Takeaway

- Waste-free resampling and mutation does not help (or hurt) much for this inference task.
- Possible explanations

• Takeaway

• Waste-free resampling and mutation does not help (or hurt) much for this inference task.

• Possible explanations

Our SMC samplers are tailored to object detection.

• Catalogs stratified by source count to avoid transdimensional sampling.

• Takeaway

• Waste-free resampling and mutation does not help (or hurt) much for this inference task.

Possible explanations

- Our SMC samplers are tailored to object detection.
 - Catalogs stratified by source count to avoid transdimensional sampling.
- 2 We used fixed proposal variances in the mutation step.
 - Could be adapted, but not obvious how to do this in this setting.

• Takeaway

• Waste-free resampling and mutation does not help (or hurt) much for this inference task.

Possible explanations

- Our SMC samplers are tailored to object detection.
 - Catalogs stratified by source count to avoid transdimensional sampling.
- We used fixed proposal variances in the mutation step.
 - Could be adapted, but not obvious how to do this in this setting.
- Original paper focused on long-chain setting (small *M*, large *P*).
 - Advantages of waste-free procedure may be exaggerated.

A B + A B +
 A

Thank you!

Jaylin Lowe and Tim White

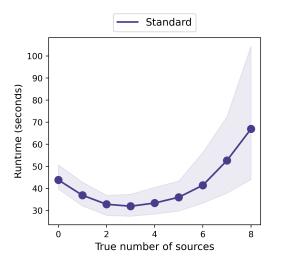
Waste-free SMC for light source detection

∃ ► < ∃ ►</p> **STATS 608**

< (1) ▼ (1)

3

Results: Runtime



STATS 608

3

Results: Runtime

