Estimating the lifetime risk of a false positive screening test result

Tim White and Sara Algeri

University of Minnesota - Twin Cities

JSM, August 2022

Background

2/36

Screening outcomes and consequences

	Has disease	Does not have disease
Positive result	True positive (TP)	False positive (FP)
Negative result	False negative (FN)	True negative (TN)

• Potential consequences of false positives:

- Stress and anxiety¹⁻⁵
- 2 Lower compliance with future screenings⁶⁻⁷
- Onnecessary follow-up procedures⁸

Scope of false positive risk

- For an uninfected individual, what is the probability of receiving...
 - a false positive on one screening occasion for a particular disease?

• at least one false positive in a lifetime for a particular disease?

• at least one false positive in a lifetime for any disease?

Existing literature

- For an uninfected individual, what is the probability of receiving...
 - a false positive on one screening occasion for a particular disease?

Disease	Screening procedure	Estimate (SE)
Breast cancer	Mammogram	4.9% (0.1%)
Cervical cancer	Pap test	5.0% (0.1%)
Colorectal cancer	Colonoscopy	11.3% (1.3%)
Lung cancer	Low-dose CT scan	20.7% (0.1%)
Prostate cancer	PSA test	10.2% (0.3%)
Chlamydia	NAAT	0.5% (<0.1%)
Gonorrhea	NAAT	0.2% (<0.1%)
Hepatitis B	HBsAg test	2.0% (0.1%)
Hepatitis C	Anti-HCV antibody test	1.0% (0.2%)
HIV	Antigen/antibody test	0.2% (<0.1%)
Syphilis	RPR test	0.3% (<0.1%)

Existing literature

- For an uninfected individual, what is the probability of receiving...
 - at least one false positive in a lifetime for a particular disease?
 - Estimates range from 49% to 61% for 10 mammograms⁹⁻¹⁰
 - 33% for 2 low-dose CT scans¹¹

- at least one false positive in a lifetime for any disease?
 - 60% for men and 49% for women after 14 screening occasions for prostate, lung, colorectal, and ovarian cancer¹²⁻¹³
 - More comprehensive estimates: ???

Guiding questions

• How do we estimate the probability that an individual will receive at least one false positive result when they get screened repeatedly for multiple diseases throughout their lifetime?

What *is* this lifetime probability for individuals who follow the recommended screening guidelines of the U.S. Preventive Services Task Force (USPSTF)?

To what extent does this lifetime probability vary according to individuals' demographic and behavioral characteristics?

Guiding questions

How do we estimate the probability that an individual will receive at least one false positive result when they get screened repeatedly for multiple diseases throughout their lifetime?

What is this lifetime probability for individuals who follow the recommended screening guidelines of the U.S. Preventive Services Task Force (USPSTF)?

To what extent does this lifetime probability vary according to individuals' demographic and behavioral characteristics?

Guiding questions

How do we estimate the probability that an individual will receive at least one false positive result when they get screened repeatedly for multiple diseases throughout their lifetime?

What *is* this lifetime probability for individuals who follow the recommended screening guidelines of the U.S. Preventive Services Task Force (USPSTF)?

• To what extent does this lifetime probability vary according to individuals' demographic and behavioral characteristics?

Methodology

10/36

Diseases and screening procedures

- Inclusion criteria:
 - Cancer¹⁴ or STD¹⁵
 - **2** USPSTF grade of C or higher¹⁶

Disease	Screening procedure
Breast cancer	Mammogram
Cervical cancer	Pap test
Colorectal cancer	Colonoscopy
Lung cancer	Low-dose CT scan
Prostate cancer	PSA test
Chlamydia	NAAT
Gonorrhea	NAAT
Hepatitis B	HBsAg test
Hepatitis C	Anti-HCV antibody test
HIV	Antigen/antibody test
Syphilis	RPR test

Data

+ The False Positi	ives Calculator										
						Sear	ch				
Disease 1	Screening test 1	Study ID 🗊	TP 1	EN 1	TN 1	FP 1	N 1	Sensitivity 1	Specificity 1	PPV 1	NPV 1
Breast cancer	Mammography	Canadian	226	76	41575	2841	44718	74.8%	93.6%	7.4%	99.8%
Breast cancer	Mammography	Malmo	118	10	15088	418	15634	92.2%	97.3%	22.0%	99.9%
Breast cancer	Mammography	Stockholm	128	21	30900	1525	32574	85.9%	95.3%	7.7%	99.9%
Breast cancer	Mammography	Swedish two-county	413	20	65311	3026	68770	95.4%	95.6%	12.0%	100.0%
Cervical cancer	Pap	ARTISTIC round 1	133	0	5338	653	6124	100.0%	89.1%	16.9%	100.0%
Cervical cancer	Pap	ARTISTIC round 2	34	1	3656	176	3867	97.1%	95.4%	16.2%	100.0%
Cervical cancer	Pap	FINNISH	267	52	61241	4239	65799	83.7%	93.5%	5.9%	99.9%
Cervical cancer	Pap	NTCC phase I	84	0	21201	771	22056	100.0%	96.5%	9.8%	100.0%
Cervical cancer	Pap	NTCC phase II	55	0	23268	770	24093	100.0%	96.8%	6.7%	100.0%
Cervical cancer	Pap	POBASCAM round 1	193	22	19400	513	20128	89.8%	97.4%	27.3%	99.9%
Cervical cancer	Pap	POBASCAM round 2	162	22	8838	612	9634	88.0%	93.5%	20.9%	99.8%
Cervical cancer	Pap	SWEDESCREEN	78	41	6120	72	6311	65.5%	98.8%	52.0%	99.3%
Chlamydia	NAAT (chlamydia)	Schacter 2003	106	13	1262	10	1391	89.1%	99.2%	91.4%	99.0%
Chlamydia	NAAT (chlamydia)	Taylor 2011	52	4	389	4	449	92.9%	99.0%	92.9%	99.0%
Chlamydia	NAAT (chlamydia)	Van Der Pol 2012a	101	3	2173	12	2289	97.1%	99.5%	89.4%	99.9%
Chlamydia	NAAT (chlamydia)	Schoeman 2012	163	20	2050	0	2233	89.1%	100.0%	100.0%	99.0%
Chlamydia	NAAT (chlamydia)	Van Der Pol 2012a	94	11	2163	1	2269	89.5%	100.0%	98.9%	99.5%
Chlamydia	NAAT (chlamydia)	Schacter 2003	68	7	503	3	581	90.7%	99.4%	95.8%	98.6%
Chlamydia	NAAT (chlamydia)	Shrier 2004	14	13	99	0	126	51.9%	100.0%	100.0%	88.4%
Chlamydia	NAAT (chlamydia)	Van Der Pol 2012a	102	4	2155	7	2268	96.2%	99.7%	93.6%	99.8%

Tim White and Sara Algeri (UMN)

Subpopulations and screening intervals

- 6 female subpopulations
 - Anticipated number of pregnancies (0/1/2)
 - History of smoking (yes/no)
- 8 male subpopulations
 - Has sex with men (yes/no)
 - History of smoking (yes/no)
 - Intend to get screened for prostate cancer (yes/no)

- Lifetime number of screening occasions based on USPSTF guidelines
 - $\bullet\,$ e.g., Colonoscopy every 10 years between ages 45 and 75
 - \implies 4 lifetime screening occasions

Model

Step 1 of 3

- Goal:
 - Model the probability that an individual will receive a false positive on one screening occasion for a particular disease d
- Assumptions:
 - Individual is not infected with disease d on each screening occasion

$$\widehat{p}_d = rac{\# ext{ of FP in all studies for disease } d}{\# ext{ of FP and TN in all studies for disease } d}$$

Model

Step 2 of 3

- Goal:
 - Model the probability that an individual in subpopulation *i* will receive at least one false positive in a **lifetime** for a **particular** disease *d*

Assumptions:

- Individual gets screened the recommended number of times T_{id} with the primary screening procedure for disease d
- Results for one screening occasion are independent from results for other screening occasions

15/36

$$\widehat{P}_{id} = 1 - (1 - \widehat{p}_d)^{T_{id}}$$

Model

Step 3 of 3

- Goal:
 - Model the probability that an individual in subpopulation *i* will receive at least one false positive in a lifetime for any disease in some set D_i
- Assumptions:
 - Screening results for one disease are independent from screening results for other diseases

$$\widehat{p}_i = 1 - \prod_{d \in \mathcal{D}_i} (1 - \widehat{P}_{id}) = 1 - \prod_{d \in \mathcal{D}_i} (1 - \widehat{p}_d)^{\mathcal{T}_{id}}$$

Accounting for uncertainty

- Assume that each study s can be modeled by a multinomial random variable Z_s ~ Multinomial(N_s, p̂_{FP,s}, p̂_{TN,s}, p̂_{+,s}), where:
 - N_s = sample size of study s
 - \$\hat{p}_{FP,s}\$; \$\hat{p}_{TN,s}\$; \$\hat{p}_{+,s}\$ = proportion of observations in study s that correspond to each screening outcome (FP; TN; TP or FN)

Accounting for uncertainty

- Assume that each study s can be modeled by a multinomial random variable Z_s ~ Multinomial(N_s, p̂_{FP,s}, p̂_{TN,s}, p̂_{+,s}), where:
 - N_s = sample size of study s
 - \$\hat{p}_{FP,s}\$; \$\hat{p}_{TN,s}\$; \$\hat{p}_{+,s}\$ = proportion of observations in study s that correspond to each screening outcome (FP; TN; TP or FN)
- Employ the parametric bootstrap
 - Draw from multinomial distribution to simulate results of each study
 - Use simulated data to compute one realization of \hat{p}_i
 - Repeat 9,999 times to obtain B = 10,000 realizations of \hat{p}_i

Accounting for uncertainty

- Assume that each study s can be modeled by a multinomial random variable Z_s ~ Multinomial(N_s, p̂_{FP,s}, p̂_{TN,s}, p̂_{+,s}), where:
 - N_s = sample size of study s
 - \$\hat{p}_{FP,s}\$; \$\hat{p}_{TN,s}\$; \$\hat{p}_{+,s}\$ = proportion of observations in study s that correspond to each screening outcome (FP; TN; TP or FN)
- Employ the parametric bootstrap
 - Draw from multinomial distribution to simulate results of each study
 - Use simulated data to compute one realization of \hat{p}_i
 - Repeat 9,999 times to obtain B = 10,000 realizations of \hat{p}_i
- Compute the **standard error** of \hat{p}_i , given by

$$\mathsf{SE}(\widehat{p}_i) = \sqrt{\frac{1}{B-1}\sum_{b=1}^{B}(\widehat{p}_i^{(b)} - \overline{\widehat{p}}_i)^2}, \quad \text{where } \overline{\widehat{p}}_i = \frac{1}{B}\sum_{b=1}^{B}\widehat{p}_i^{(b)}$$

Results

20 / 36

Female subpopulations

Estimated lifetime false positive probability by subpopulation

Subpopulation	Estimate (SE)
Baseline females	85.5% (0.9%)
Females, one pregnancy	86.0% (0.8%)
Females, two pregnancies	86.5% (0.8%)
Female smokers	88.5% (0.7%)
Female smokers, one pregnancy	88.9% (0.7%)
Female smokers, two pregnancies	89.3% (0.6%)
Baseline males	38.9% (3.6%)
Men who have sex with men (MSM)	43.1% (3.4%)
Male smokers	51.5% (2.9%)
MSM smokers	54.9% (2.7%)
Males, routine prostate exams	74.2% (1.7%)
MSM, routine prostate exams	76.0% (1.6%)
Male smokers, routine prostate exams	79.6% (1.3%)
MSM smokers, routine prostate exams	81.0% (1.2%)

Male subpopulations

Estimated lifetime false positive probability by subpopulation

Subpopulation	Estimate (SE)				
Baseline females	85.5% (0.9%)				
Females, one pregnancy	86.0% (0.8%)				
Females, two pregnancies	86.5% (0.8%)				
Female smokers	88.5% (0.7%)				
Female smokers, one pregnancy	88.9% (0.7%)				
Female smokers, two pregnancies	89.3% (0.6%)				
Baseline males	38.9% (3.6%)				
Men who have sex with men (MSM)	43.1% (3.4%)				
Male smokers	51.5% (2.9%)				
MSM smokers	54.9% (2.7%)				
Males, routine prostate exams	74.2% (1.7%)				
MSM, routine prostate exams	76.0% (1.6%)				
Male smokers, routine prostate exams	79.6% (1.3%)				
MSM smokers, routine prostate exams	81.0% (1.2%)				

Discussion

- How do we estimate the probability that an individual will receive at least one false positive result when they get screened repeatedly for multiple diseases throughout their lifetime?
 - •
- What *is* this lifetime probability for individuals who follow the recommended screening guidelines of the U.S. Preventive Services Task Force (USPSTF)?

To what extent does this lifetime probability vary according to individuals' demographic and behavioral characteristics?

Tim White and Sara Algeri (UMN)

۵

How do we estimate the probability that an individual will receive at least one false positive result when they get screened repeatedly for multiple diseases throughout their lifetime?

•
$$\left| \widehat{p}_i = 1 - \prod_{d \in \mathcal{D}_i} (1 - \widehat{P}_{id}) = 1 - \prod_{d \in \mathcal{D}_i} (1 - \widehat{p}_d)^{T_{id}} \right|$$

What *is* this lifetime probability for individuals who follow the recommended screening guidelines of the U.S. Preventive Services Task Force (USPSTF)?

To what extent does this lifetime probability vary according to individuals' demographic and behavioral characteristics?

How do we estimate the probability that an individual will receive at least one false positive result when they get screened repeatedly for multiple diseases throughout their lifetime?

•
$$\left| \widehat{p}_i = 1 - \prod_{d \in \mathcal{D}_i} (1 - \widehat{P}_{id}) = 1 - \prod_{d \in \mathcal{D}_i} (1 - \widehat{p}_d)^{T_{id}} \right|$$

- What *is* this lifetime probability for individuals who follow the recommended screening guidelines of the U.S. Preventive Services Task Force (USPSTF)?
 - At least 85% for females, 38% for males
- To what extent does this lifetime probability vary according to individuals' demographic and behavioral characteristics?

How do we estimate the probability that an individual will receive at least one false positive result when they get screened repeatedly for multiple diseases throughout their lifetime?

•
$$\left| \widehat{p}_i = 1 - \prod_{d \in \mathcal{D}_i} (1 - \widehat{P}_{id}) = 1 - \prod_{d \in \mathcal{D}_i} (1 - \widehat{p}_d)^{T_{id}} \right|$$

- What *is* this lifetime probability for individuals who follow the recommended screening guidelines of the U.S. Preventive Services Task Force (USPSTF)?
 - At least 85% for females, 38% for males
- To what extent does this lifetime probability vary according to individuals' demographic and behavioral characteristics?
 - Substantial variation among males (38%-81%)
 - Little variation among females (85%-89%)

O Estimated probabilities are only valid for uninfected individuals

Assumption of perfect adherence to USPSTF screening guidelines may not hold in practice¹⁷⁻¹⁹

Sonsidered only the primary screening procedure for each disease

 Difficult to determine lifetime number of STD screening occasions since STD guidelines are highly individualized

• Estimated probabilities are only valid for uninfected individuals

Assumption of perfect adherence to USPSTF screening guidelines may not hold in practice¹⁷⁻¹⁹

• Considered only the primary screening procedure for each disease

 Difficult to determine lifetime number of STD screening occasions since STD guidelines are highly individualized

9 Estimated probabilities are only valid for uninfected individuals

Assumption of perfect adherence to USPSTF screening guidelines may not hold in practice¹⁷⁻¹⁹

Output Section 2017 **Output Considered only the primary screening procedure for each disease**

 Difficult to determine lifetime number of STD screening occasions since STD guidelines are highly individualized

9 Estimated probabilities are only valid for uninfected individuals

Assumption of perfect adherence to USPSTF screening guidelines may not hold in practice¹⁷⁻¹⁹

Sonsidered only the primary screening procedure for each disease

O Difficult to determine lifetime number of STD screening occasions since STD guidelines are highly individualized

Summarizing our contribution

What:

- Novel framework for quantifying the lifetime risk of a false positive
 - Incorporates multiple diseases and demographic characteristics
 - Easy to update as more data become available

Why:

- Improve patients' perspective on screening technology
- Facilitate transparent communication by healthcare providers

How:

- Manuscript available on arXiv
- R Shiny dashboard

References & Links

References

- Fowler FJ Jr, Barry MJ, Walker-Corkery B, Caubet J-F, Bates DW, Lee JM, et al. The impact of a suspicious prostate biopsy on patients' psychological, socio-behavioral, and medical care outcomes. J Gen Intern Med. 2006; 21: 715-721.
- 2 Katz AR, Effler PV, Ohye RG, Brouillet B, Lee MVC, Whiticar PM. False-positive gonorrhea test results with a nucleic acid amplification test: the impact of low prevalence on positive predictive value. Clin Infect Dis. 2004; 38: 814-819.
- 3 Salz T, Gottlieb SL, Smith JS, Brewer NT. The association between cervical abnormalities and attitudes toward cervical cancer prevention. J Womens Health (Larchmt). 2010; 19: 2011-2016.
- Shanks L, Klarkowski D, O'Brien DP. False positive HIV diagnoses in resource limited settings: operational lessons learned for HIV programmes. PLoS One. 2013; 8: e59906.
- Toft EL, Kaae SE, Malmqvist J, Brodersen J. Psychosocial consequences of receiving false-positive colorectal cancer screening results: a qualitative study. Scand J Prim Health Care. 2019; 37: 145-154.
- **6** Bond M, Pavey T, Welch K, Cooper C, Garside R, Dean S, et al. Systematic review of the psychological consequences of false-positive screening mammograms. Health Technol Assess. 2013; 17: 1-170, v-vi.
- Ford ME, Havstad SL, Flickinger L, Johnson CC. Examining the effects of false positive lung cancer screening results on subsequent lung cancer screening adherence. Cancer Epidemiol Biomarkers Prev. 2003; 12: 28-33.
- Lidbrink E, Elfving J, Frisell J, Jonsson E. Neglected aspects of false positive findings of mammography in breast cancer screening: analysis of false positive cases from the Stockholm trial. BMJ. 1996; 312: 273-276.
- Hubbard RA, Kerlikowske K, Flowers CI, Yankaskas BC, Zhu W, Miglioretti DL. Cumulative probability of false-positive recall or biopsy recommendation after 10 years of screening mammography: a cohort study. Ann Intern Med. 2011; 155: 481-492.
- Elmore JG, Barton MB, Moceri VM, Polk S, Arena PJ, Fletcher SW. Ten-year risk of false positive screening mammograms and clinical breast examinations. N Engl J Med. 1998; 338: 1089-1096.

References

- Croswell JM, Baker SG, Marcus PM, Clapp JD, Kramer BS. Cumulative incidence of false-positive test results in lung cancer screening: a randomized trial. Ann Intern Med. 2010; 152: 505-512.
- Baker SG, Kramer BS. Estimating the cumulative risk of a false-positive under a regimen involving various types of cancer screening tests. J Med Screen. 2008; 15: 18-22.
- Croswell JM, Kramer BS, Kreimer AR, Prorok PC, Xu J-L, Baker SG, et al. Cumulative incidence of false-positive results in repeated, multimodal cancer screening. Ann Fam Med. 2009; 7: 212-222.
- 🚺 National Cancer Institute. Cancer Types. [cited 15 Jun 2022]. Available from: https://www.cancer.gov/types
- 15 Centers for Disease Control and Prevention. Diseases & Related Conditions. [cited 15 Jun 2022]. Available from: https://www.cdc.gov/std/general/default.htm
- U.S. Preventive Services Task Force. Home Page. [cited 15 Jun 2022]. Available from: https://www.uspreventiveservicestaskforce.org/uspstf/
- Corbelli J, Borrero S, Bonnema R, McNamara M, Kraemer K, Rubio D, et al. Physician adherence to U.S. Preventive Services Task Force mammography guidelines. Womens Health Issues. 2014; 24: e313-e319.
- 18 Nelson W, Moser RP, Gaffey A, Waldron W. Adherence to cervical cancer screening guidelines for U.S. women aged 25-64: data from the 2005 Health Information National Trends Survey (HINTS). J Womens Health (Larchmt). 2009; 18: 1759-1768.
- Cyhaniuk A, Coombes ME. Longitudinal adherence to colorectal cancer screening guidelines. Am J Manag Care. 2016; 22: 105-111.

Links

References & Links

https://linktr.ee/timwhite_jsm2022