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Introduction

Small object detection in biology

Malaria-infected blood cells Cancerous cervical cells
Broad Bioimage Benchmark Collection, BBBC041 Cervix93 cytology dataset
Ljosa et al., 2012 Phoulady and Mouton, 2018
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Introduction

Small object detection in remote sensing

Forest cover in West Africa

Brandt, et al. An unexpectedly large count of trees in the West African Sahara and Sahel. Nature, 2020.
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Introduction

Small object detection in astronomy

The Messier 15 globular cluster, imaged by Hubble/SDSS
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Introduction

Small object detection in astronomy

The Messier 15 globular cluster, imaged by Hubble/SDSS

% Astronomical cataloging is the task of inferring the properties of
stars, galaxies, and other objects in astronomical images
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Introduction

Challenges of astronomical cataloging

% Massive amount of data, typically
with no ground truth

100 x 100 pixel subregion of Messier 15

Tim White (UMich Statistics) SMC for probabilistic object detection JSM 2024



Introduction

Challenges of astronomical cataloging

% Massive amount of data, typically
with no ground truth

% Objects may be faint and might
visually overlap with one another

100 x 100 pixel subregion of Messier 15

Tim White (UMich Statistics) SMC for probabilistic object detection JSM 2024



Introduction

Challenges of astronomical cataloging

% Massive amount of data, typically
with no ground truth

% Objects may be faint and might
visually overlap with one another

% Requires transdimensional inference
= True number of objects is unknown

- Properties are ambiguous 100 x 100 pixel subregion of Messier 15
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Introduction

Existing approaches to object detection

Non-probabilistic

% Use deterministic algorithm to
make single-catalog estimates

% Cali I .

Methods:
—> Threshold + watershed

= (Many) CNN-based methods

—> Source Extractor
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Introduction

Existing approaches to object detection

Non-probabilistic Probabilistic

% Infer a posterior distribution

% Use deterministic algorithm to
over all possible catalogs

make single-catalog estimates

* Calibrated—uneertainty % Calibrated uncertainty

Methods:

= Markov chain Monte Carlo
Sample catalogs from the posterior

= (Many) CNN-based methods o )
=> Variational inference

Methods:
—> Threshold + watershed

—> Source Extractor Optimize an approximate posterior

SMC for probabilistic object detection JSM 2024
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Introduction

Our contribution

% We propose a probabilistic method for small object detection based
on sequential Monte Carlo (SMC)
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Our contribution

% We propose a probabilistic method for small object detection based
on sequential Monte Carlo (SMC)

Our algorithm...
¥ runs in parallel on tiles (i.e., subregions) of an image
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Introduction

Our contribution

% We propose a probabilistic method for small object detection based
on sequential Monte Carlo (SMC)

Our algorithm...
¥ runs in parallel on tiles (i.e., subregions) of an image
* leverages GPUs to efficiently evaluate latent variable catalogs

% performs transdimensional inference without transdimensional sampling
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Our contribution

% Tasks for the remainder of this talk:
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Our contribution

% Tasks for the remainder of this talk:

© Introduce an SMC sampler for detecting objects in each tile
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Introduction

Our contribution

% Tasks for the remainder of this talk:

© Introduce an SMC sampler for detecting objects in each tile
@ Combine the tile-level catalogs via divide-and-conquer SMC
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An SMC sampler for one tile

An SMC sampler for one tile
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Model

* Image x with a height of H pixels and a width of W pixels
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Model

* Image x with a height of H pixels and a width of W pixels
% Prior

= Number of objects s ~ Uniform{0,1,2, ..., Snax}
— Given s, locations 1, ..., 0 S Uniform ([0, H] x [0, W])
id

features f1,...,f ~ F()
= Catalog z = {s} U {¢;,fi}3;
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Model

* Image x with a height of H pixels and a width of W pixels
% Prior

= Number of objects s ~ Uniform{0,1,2, ..., Snax}

— Given s, locations 1, ..., 0 S Uniform ([0, H] x [0, W])
features fi,...,f ~ F()
= Catalog z = {s} U {{;, fi};_;

% Likelihood

= Intensity at pixel (h, w) is xpy | z ~ Poisson(Apw(2))
= Awv(2) = background intensity + function of features at (h, w)
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Model

* Image x with a height of H pixels and a width of W pixels
% Prior

= Number of objects s ~ Uniform{0,1,2, ..., Snax}
— Given s, locations 1, ..., 0 S Uniform ([0, H] x [0, W])
id

features f1,...,f ~ F()
= Catalog z = {s} U {{;,fi}3_;

% Likelihood

= Intensity at pixel (h, w) is xpy | z ~ Poisson(Apw(2))
= Awv(2) = background intensity + function of features at (h, w)

¥ Posterior p(z | x) < p(z)p(x | z)
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SMC sampler

Ingredient #1: Likelihood tempering

¥ Cannot directly sample catalogs from p(z | x)

¥ Define a sequence of auxiliary distributions p(z)p(x | z)”
—> Increase temperature 7 from 0 (prior) to 1 (posterior)
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¥ Cannot directly sample catalogs from p(z | x)

¥ Define a sequence of auxiliary distributions p(z)p(x | z)”
—> Increase temperature 7 from 0 (prior) to 1 (posterior)

¥* Procedure:

N:

= Sample N catalogs z'V e p(z) and initialize weights w' %
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SMC sampler

Ingredient #1: Likelihood tempering

¥ Cannot directly sample catalogs from p(z | x)

¥ Define a sequence of auxiliary distributions p(z)p(x | z)”
—> Increase temperature 7 from 0 (prior) to 1 (posterior)

¥* Procedure:

N_ 1
- N

= Sample N catalogs z*N e p(z) and initialize weights w'

While 7 < 1:
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SMC sampler

Ingredient #1: Likelihood tempering

¥ Cannot directly sample catalogs from p(z | x)
¥ Define a sequence of auxiliary distributions p(z)p(x | z)”
—> Increase temperature 7 from 0 (prior) to 1 (posterior)

¥* Procedure:

N:

= Sample N catalogs z'V e p(z) and initialize weights w' %

While 7 < 1:
= Resample the catalogs to avoid weight degeneracy
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SMC sampler

Ingredient #1: Likelihood tempering

¥ Cannot directly sample catalogs from p(z | x)

¥ Define a sequence of auxiliary distributions p(z)p(x | z)”
—> Increase temperature 7 from 0 (prior) to 1 (posterior)

¥* Procedure:

N_ 1
- N

— Sample N catalogs z'*V o p(z) and initialize weights w'
While 7 < 1:

= Resample the catalogs to avoid weight degeneracy
= Mutate the catalogs using an MCMC kernel
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SMC sampler

Ingredient #1: Likelihood tempering

¥ Cannot directly sample catalogs from p(z | x)
¥ Define a sequence of auxiliary distributions p(z)p(x | z)”
—> Increase temperature 7 from 0 (prior) to 1 (posterior)

¥* Procedure:

= Sample N catalogs z*N e p(z) and initialize weights w*" = 1
While 7 < 1:

= Resample the catalogs to avoid weight degeneracy

= Mutate the catalogs using an MCMC kernel

= Increase temperature: T <— Tprevious + 0 for a suitable § > 0
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SMC sampler

Ingredient #1: Likelihood tempering

¥ Cannot directly sample catalogs from p(z | x)
¥ Define a sequence of auxiliary distributions p(z)p(x | z)”
—> Increase temperature 7 from 0 (prior) to 1 (posterior)

¥* Procedure:

= Sample N catalogs z*N e p(z) and initialize weights w*" = 1
While 7 < 1:
= Resample the catalogs to avoid weight degeneracy

Mutate the catalogs using an MCMC kernel

-
= Increase temperature: T <— Tprevious + 0 for a suitable § > 0
-

Reweight: Vn, Wn X p(X | Zn)T_TPTEVicus
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SMC sampler

Ingredient #1: Likelihood tempering

¥ Cannot directly sample catalogs from p(z | x)
¥ Define a sequence of auxiliary distributions p(z)p(x | z)”
—> Increase temperature 7 from 0 (prior) to 1 (posterior)

¥* Procedure:

N_ 1
- N

— Sample N catalogs z'*V o p(z) and initialize weights w'
While 7 < 1:

= Resample the catalogs to avoid weight degeneracy

= Mutate the catalogs using an MCMC kernel

= Increase temperature: T <— Tprevious + 0 for a suitable § > 0
-

Reweight: Vn, Wn X p(X | Zn)T_TPTEVicus

Output: Weighted catalogs {w",z"}V_ | ~ p(z | x)
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SMC sampler

Ingredient #2: Stratification by number of objects

% Resample and mutate separately among catalogs with the same
number of objects s

% Number of catalogs corresponding to each s € {0,1, ..., smax} remains
fixed through the algorithm

JSM 2024
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SMC sampler

Ingredient #3: Padded tiles

% Run sampler to generate
{WmEn}rIY:l ~ p(Z | x),
where Z=zU 7"

% Resample to obtain
{12}l ~ p(Z | x)
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SMC sampler

Ingredient #3: Padded tiles

% Run sampler to generate
{WmEn}rIY:l ~ p(Z | x),
where Z=zU 7"

% Resample to obtain
{12}l ~ p(Z | x)

* Discard detections 7 in the
padded region to obtain

{1, zn}pl ~ p(z ] %)
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Case study: Crowded starfields

% 1,000 synthetic images (16 pixels x 16 pixels)
= Up to 8 stars in each image
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Case study: Crowded starfields

% 1,000 synthetic images (16 pixels x 16 pixels)
= Up to 8 stars in each image

% Compare SMC and Source Extractor in terms of estimated number
of stars and estimated total flux
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Case study: Crowded starfields

% 1,000 synthetic images (16 pixels x 16 pixels)
= Up to 8 stars in each image

% Compare SMC and Source Extractor in terms of estimated number
of stars and estimated total flux

% SMC settings:

= 2-pixel-wide padded margin

= Make up to 10 detections per padded image
— 2,000 catalogs for each s € {0,1,...,10}
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An SMC sampler for one tile

Accuracy of estimated number of stars

—— SMC posterior mode —— Source Extractor

1.0

0.8

0.6

0.4

Proportion correct

0.2

0.0

True number of stars
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MAE of estimated number of stars

—— SMC posterior mode —— Source Extractor

2.5

2.0

15

1.0

Mean absolute error

0.5

0.0

True number of stars
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Accuracy of estimated total flux

SMC posterior mean Source Extractor

Estimated total flux
(as multiple of background)
S

0 1 2 3 4 5 6 7 1 2 3 4 5 6 7

True total flux
(as multiple of background)
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An SMC sampler for one tile

Image reconstructions

Image One SMC catalog Source Extractor
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An SMC sampler for one tile

Image reconstructions

Image One SMC catalog Source Extractor
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Combining tiles with divide-and-conquer SMC

Combining tiles with divide-and-conquer SMC
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les with divide-and-conquer SMC

Divide-and-conquer SMC

JDURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS Tavlor & Fi 5
217, VOL 26, NO. 3, #45-458 e aylor & Francis
hitp://dxdol.org/10.1080/ 10618600 20161237363 Tafar s Francis Crap

Divide-and-Conquer With Sequential Monte Carlo

F.Lindsten®, A. M. Johansen®, C. A. Naesseth®, B. K\rkpatrlck",T. B.Schén®, J. A. D. Aston', and A. Bouchard-Coté?

“Division of Systems and Control, Department of Information Technelogy, Uppsala University, Uppsala, Sweden; “Department of Statistics, Uni
of Warwick, Coventry, United Kingdem; “Department of Electrical Engineering, Linkping University, Linkiping, Sweden; “Intrepid Net Compi
*Department of Information Technology, Uppsala University, Uppsala, Sweden; ‘University of Cambridge, Cambridge, United Kingdom,; 95tatis
University of British Columbsia, Vancouver, Canada

ABSTRACT
We propose a novel class of Sequential Monte Carlo (SMC) algorithms, appropriate for inference in prob- :‘m el

L 4 5 eceived June 2015
abilistic graphical models. This class of algorithms adopts a divide-and-conquer approach based upon an Revised June 2016
auxiliary tree-structured decompasition of the model of interest, tuming the everall inferential task into a
collection of recursively solved subproblems. The proposed methed is applicable to a broad class of proba- KEYWORDS
bilistic graphical models, including models with loops. Unlike a standard SMC sampler, the proposed divide- Bayesian methods; Graphical
and-conguer SMC employs multiple independent populations of weighted particles, which are resampled, models; Hierarchical models;
merged, and d as the method ‘We illustrate empirically that this approach ean eut-  Farticlefiters
perform standard methods in terms of the accuracy of the posterior expectation and marginal likelihood
approximations. Divide-and-conquer SMC also opens up novel parallel implementation options and the
possibility of concentrating the computational effort on the most challenging subproblems. We demon-
strate its performance on a Markov random field and on a hierarchical logistic regression problem. Supple-
mentary materials including proofs and additional numerical results are available online.
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Combining tiles with divide-and-conquer SMC

Tree of tile-level target distributions

p(Z1:16 | x1:16)

///\
p(Z1:8 | x1:8) p(Zo:16 | x0:16)
PN
p(Z1:4 | x1:4) p(Zs:8 | x5:8) s
/\ /\
p(Z1:2 | x1:2) P(Z3:4 | x3:4) p(Z5:6 | X5:6) p(z7:8 | x7:8)

/\

p(z1 | x1) Pz x) p(ZE|x3) Pz |xa) Pz |xs) p(zs|x) pPE7|x7) p(Zs | xs)
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Combining tiles with divide-and-conquer SMC

Run SMC sampler in parallel on 16 tiles

p(Z1:16 | x1:16)

///\
p(zi:s | x1:8) p(20:16 | x0:16)
PN
p(Z1:4 | x1:4) p(Zs:8 | x5:8) s
/\ /\
p(z12 | x1:2) P(Z3:4 | x3:4) P(Zs:6 | X5:6) p(z7:8 | x7:8) -
p(z | x1) p(z2 | x2) p(z3 Pz | xa) P35 | xs5) p(Zs | x6) p(Z7 | x P(Zs | xg)
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Combining tiles with divide-and-conquer SMC

Run SMC sampler in parallel on 16 tiles
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e-and-conquer SMC

16 tiles — 8 pairs

% Resample and merge catalogs from adjacent tiles
% Compute weights for merged catalogs, e.g.,
n P(L)P(x], | Z75)
W12 X Zn n|zn >n n | zn
p()p(x | 27) P(Z3)P(3 | Z5)

p(Z1:16 | x1:16)

/\
p(Z1:8 | x1:8) p(Zo:16 | x0:16)
- N
p(Z1:4 | x1:4) p(Zs:8 | x5:8) s
/\ /\

p(z1 | x1) Pz x) p(ZE|x3) Pz |xa) Pz |xs) P26 |x) pPE7|x7)  p(Zs | xs)
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e-and-conquer SMC

16 tiles — 8 pairs

% Resample and merge catalogs from adjacent tiles
% Compute weights for merged catalogs, e.g.,
n P(L)P(x], | Z75)
W12 X Zn n|zn >n n | zn
p()p(x | 27) P(Z3)P(3 | Z5)
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% Resample and merge catalogs from adjacent pairs

% Compute weights for merged catalogs, e.g.,
P(ZL4)P(x]4 | Z14)

P(Z2)P(XT | 21) P(Z5.4)P(X54 | Z34)

n
W14 X

p(Z1:16 | x1:16)

/’\

p(Z1:8 | x1:8) p(Z9:16 | x0:16)
- PN
/\ /\
p(Z122 | x1:2) p(Z3:4 | x3:4) p(Zs:6 | x5:6) p(z7:8 | x7:8)
p(z1 | x1) Pz x) p(ZE|x3) Pz |xa) Pz |xs) P26 | x) pPE7|x7) P2 | xs)
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% Resample and merge catalogs from adjacent pairs

% Compute weights for merged catalogs, e.g.,
P(ZL4)P(x]4 | Z14)

P(Z2)P(XT | 21) P(Z5.4)P(X54 | Z34)

n
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/’\
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- PN
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e-and-conquer SMC

4 quadrants — 2 halves

% Resample and merge catalogs from adjacent quadrants

% Compute weights for merged catalogs, e.g.,
NCALCAEN

P(F.)P(Ty | 214) P(Z5)P(x5g | Zg)

wig o

p(Z1:16 | x1:16)

/’\
- N
p(Z1:4 | x1:4) p(Zs:8 | x5:8) s
/\ /\
p(zi2 | x1:2) p(Z3:4 | x3:4) p(Z5:6 | x5:6) p(z7:8 | x7:8)

p(z1 | x1) Pz x) p(ZE|x3) Pz |xa) Pz |xs) P26 | x) pPE7|x7)  p(Zs | xs)
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e-and-conquer SMC

4 quadrants — 2 halves

% Resample and merge catalogs from adjacent quadrants

% Compute weights for merged catalogs, e.g.,
NCALCAEN

P(F.)P(Ty | 214) P(Z5)P(x5g | Zg)

wig o

p(Z1:16 | x1:16)

//\
- N
p(Z1:4 | x1:4) p(Zs:8 | x5:8) s
/\ /\
p(zi2 | x1:2) p(Z3:4 | x3:4) p(Z5:6 | x5:6) p(z7:8 | x7:8)

p(z1 | x1) Pz x) p(ZE|x3) Pz |xa) Pz |xs) P26 | x) pPE7|x7)  p(Zs | xs)
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nd-conquer SMC

2 halves — 1 image

% Resample and merge catalogs from adjacent halves

% Compute weights for merged catalogs, e.g.,
P(Z116)P(X16 | Z1'16)

P(2g)P(X('s | Z1') P(2516)P(x316 | Z516)

n
W11 X

/’\
p(Z1:8 | x1:8) p(Zo:16 | x0:16)
- N
p(Z1:4 | x1:4) p(Zs:8 | x5:8) s
/\ /\

p(Z122 | x1:2) p(Z3:4 | x3:4) p(Zs:6 | x5:6) p(z78 | x7:8)

p(z1 | x1) Pz x) p(ZE|x3) Pz |xa) Pz |xs) P26 | x) pPE7|x7)  p(Zs | xs)
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Combining tiles with divide-and-conquer SMC

Discard detections in the padded region

/\
p(Z1:8 | x1:8) p(Zo:16 | x0:16)
- N
p(Z1:4 | x1:4) p(Zs:8 | x5:8) s
/\ /\

p(Z122 | x1:2) p(Z3:.4 | x3:4) p(Zs:6 | x5:6) p(z7:8 | x7:8)

p(z1 | x1) Pz x) p(ZE|x3) Pz |xa) Pz |xs) p(z6|x) PE7|x7)  p(Zs | xs)
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Combining tiles with divide-and-conquer SMC

Case study: Crowded starfields (cont.)

% 1,000 synthetic images (32 pixels x 32 pixels)
= Up to 12 stars in each image
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Combining tiles with divide-and-conquer SMC

Case study: Crowded starfields (cont.)

% 1,000 synthetic images (32 pixels x 32 pixels)
= Up to 12 stars in each image

% Compare SMC and Source Extractor in terms of estimated number
of stars and estimated total flux
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Combining tiles with divide-and-conquer SMC

Case study: Crowded starfields (cont.)

% 1,000 synthetic images (32 pixels x 32 pixels)
= Up to 12 stars in each image

% Compare SMC and Source Extractor in terms of estimated number
of stars and estimated total flux

% SMC settings:

= Tiles of size 8 pixels x 8 pixels, each with 2-pixel-wide padded margin

= Make up to 5 detections per padded tile
= 2,500 catalogs for each s € {0,1,...,5}
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Combining tiles with divide-and-conquer SMC

Accuracy of estimated number of stars

—— SMC posterior mode —— Source Extractor

1.0

o o
o ™

Proportion correct
o
N

0.2

True number of stars
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g tiles with divide-and-conquer SMC

MAE of estimated number of stars

—— SMC posterior mode —— Source Extractor

175

1.50

1.25

Mean absolute error

0.50

0.25

0.00

True number of stars
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g tiles with divide-and-conquer SMC

Accuracy of estimated total flux

SMC posterior mean Source Extractor

-
N

12

=
® o

Estimated total flux
(as multiple of background)
o

2 4 6 8 10 0 2 4 6 8 10

True total flux
(as multiple of background)

Tim White (UMich Statistics) SMC for probabilistic object detection JSM 2024



Combining tiles with divide-and-conquer SMC

Image reconstructions

Image One SMC catalog Source Extractor
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Image reconstructions
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Combining tiles with divide-and-conquer SMC

Image reconstructions

Image One SMC catalog Source Extractor
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Limitations and future work

Limitations and future work
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Limitations and future work

% Limitation #1: Peaked likelihood — low effective sample size
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% Limitation #1: Peaked likelihood — low effective sample size
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Limitations and future work

Limitations and future work
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% Limitation #1: Peaked likelihood — low effective sample size

= Next step: Incorporate tempering in the divide-and-conquer procedure

% Limitation #2: Mutation step of SMC absorbs most of runtime

— Next step: Use a gradient-based MCMC kernel or a normalizing flow

* Limitation #3: Requires an accurate parametric object model

—> Next step: Investigate sensitivity to model misspecification

Tim White (UMich Statistics) SMC for probabilistic object detection JSM 2024



Limitations and future work

Thank youl!

=540,

I.-IJF
"u

https://linktr.ee/timwhite0

Tim White (UMich Statistics)

JSM 2024


https://linktr.ee/timwhite0

	Introduction
	An SMC sampler for one tile
	Combining tiles with divide-and-conquer SMC
	Limitations and future work

