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Introduction

Small object detection in biology

Malaria-infected blood cells

Broad Bioimage Benchmark Collection, BBBC041
Ljosa et al., 2012

Cancerous cervical cells

Cervix93 cytology dataset
Phoulady and Mouton, 2018
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Introduction

Small object detection in remote sensing

Forest cover in West Africa

Brandt, et al. An unexpectedly large count of trees in the West African Sahara and Sahel. Nature, 2020.
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Introduction

Small object detection in astronomy

The Messier 15 globular cluster, imaged by Hubble/SDSS

✷ Astronomical cataloging is the task of inferring the properties of
stars, galaxies, and other objects in astronomical images
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Introduction

Challenges of astronomical cataloging

✷ Massive amount of data, typically
with no ground truth

✷ Objects may be faint and might
visually overlap with one another

✷ Requires transdimensional inference
➙ True number of objects is unknown

➙ Properties are ambiguous

100 x 100 pixel subregion of Messier 15
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Introduction

Existing approaches to object detection

Non-probabilistic

✷ Use deterministic algorithm to
make single-catalog estimates

✷ Calibrated uncertainty

Methods:

➙ Threshold + watershed

➙ (Many) CNN-based methods

➙ Source Extractor

Probabilistic

✷ Infer a posterior distribution
over all possible catalogs

✷ Calibrated uncertainty

Methods:

➙ Markov chain Monte Carlo
Sample catalogs from the posterior

➙ Variational inference
Optimize an approximate posterior
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Introduction

Our contribution

✷ We propose a probabilistic method for small object detection based
on sequential Monte Carlo (SMC)

Our algorithm...

✷ runs in parallel on tiles (i.e., subregions) of an image

✷ leverages GPUs to efficiently evaluate latent variable catalogs

✷ performs transdimensional inference without transdimensional sampling
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Introduction

Our contribution

✷ Tasks for the remainder of this talk:

1 Introduce an SMC sampler for detecting objects in each tile

2 Combine the tile-level catalogs via divide-and-conquer SMC
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An SMC sampler for one tile

Model

✷ Image x with a height of H pixels and a width of W pixels

✷ Prior

➙ Number of objects s ∼ Uniform{0, 1, 2, . . . , smax}

➙ Given s, locations ℓ1, . . . , ℓs
iid∼ Uniform

(
[0,H]× [0,W ]

)
➙ Given s, features f1, . . . , fs

iid∼ F(·)
➙ Catalog z = {s} ∪ {ℓj , fj}sj=1

✷ Likelihood

➙ Intensity at pixel (h,w) is xhw | z ∼ Poisson(λhw (z))

➙ λhw (z) = background intensity + function of features at (h,w)

✷ Posterior p(z | x) ∝ p(z)p(x | z)
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An SMC sampler for one tile

SMC sampler

Ingredient #1: Likelihood tempering

✷ Cannot directly sample catalogs from p(z | x)
✷ Define a sequence of auxiliary distributions p(z)p(x | z)τ

➙ Increase temperature τ from 0 (prior) to 1 (posterior)

✷ Procedure:

➙ Sample N catalogs z1:N
iid∼ p(z) and initialize weights w1:N = 1

N

While τ < 1:

➙ Resample the catalogs to avoid weight degeneracy

➙ Mutate the catalogs using an MCMC kernel

➙ Increase temperature: τ ← τprevious + δ for a suitable δ > 0

➙ Reweight: ∀n, wn ∝ p(x | zn)τ−τprevious

Output: Weighted catalogs {wn, zn}Nn=1 ∼ p(z | x)
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An SMC sampler for one tile

SMC sampler

Ingredient #2: Stratification by number of objects

✷ Resample and mutate separately among catalogs with the same
number of objects s

✷ Number of catalogs corresponding to each s ∈ {0, 1, ..., smax} remains
fixed through the algorithm
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An SMC sampler for one tile

SMC sampler

Ingredient #3: Padded tiles

✷ Run sampler to generate
{wn, z̃n}Nn=1 ∼ p(z̃ | x),
where z̃ = z ∪ z+

✷ Resample to obtain
{1, z̃n}Nn=1 ∼ p(z̃ | x)

✷ Discard detections z+ in the
padded region to obtain
{1, zn}Nn=1 ∼ p(z | x)
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An SMC sampler for one tile

Case study: Crowded starfields

✷ 1,000 synthetic images (16 pixels × 16 pixels)

➙ Up to 8 stars in each image

✷ Compare SMC and Source Extractor in terms of estimated number
of stars and estimated total flux

✷ SMC settings:

➙ 2-pixel-wide padded margin

➙ Make up to 10 detections per padded image

➙ 2,000 catalogs for each s ∈ {0, 1, ..., 10}
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An SMC sampler for one tile

Accuracy of estimated number of stars
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An SMC sampler for one tile

MAE of estimated number of stars
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An SMC sampler for one tile

Accuracy of estimated total flux
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An SMC sampler for one tile

Image reconstructions

Image One SMC catalog Source Extractor
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Combining tiles with divide-and-conquer SMC
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Divide-and-conquer SMC
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Combining tiles with divide-and-conquer SMC

Tree of tile-level target distributions

p(z̃1:16 | x1:16)

p(z̃1:8 | x1:8)

p(z̃1:4 | x1:4)

p(z̃1:2 | x1:2)

p(z̃1 | x1) p(z̃2 | x2)

p(z̃3:4 | x3:4)

p(z̃3 | x3) p(z̃4 | x4)

p(z̃5:8 | x5:8)

p(z̃5:6 | x5:6)

p(z̃5 | x5) p(z̃6 | x6)

p(z̃7:8 | x7:8) · · ·

p(z̃7 | x7) p(z̃8 | x8) · · ·

p(z̃9:16 | x9:16)

· · · · · ·
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Combining tiles with divide-and-conquer SMC

Run SMC sampler in parallel on 16 tiles
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Combining tiles with divide-and-conquer SMC

16 tiles → 8 pairs

✷ Resample and merge catalogs from adjacent tiles

✷ Compute weights for merged catalogs, e.g.,

wn
1:2 ∝

p(z̃n1:2)p(x
n
1:2 | z̃n1:2)

p(z̃n1 )p(x
n
1 | z̃n1 ) p(z̃n2 )p(x

n
2 | z̃n2 )

p(z̃1:16 | x1:16)

p(z̃1:8 | x1:8)

p(z̃1:4 | x1:4)

p(z̃1:2 | x1:2)

p(z̃1 | x1) p(z̃2 | x2)

p(z̃3:4 | x3:4)
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Combining tiles with divide-and-conquer SMC

8 pairs → 4 quadrants

✷ Resample and merge catalogs from adjacent pairs

✷ Compute weights for merged catalogs, e.g.,

wn
1:4 ∝

p(z̃n1:4)p(x
n
1:4 | z̃n1:4)

p(z̃n1:2)p(x
n
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p(z̃5:8 | x5:8)

p(z̃5:6 | x5:6)
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p(z̃7:8 | x7:8) · · ·

p(z̃7 | x7) p(z̃8 | x8) · · ·

p(z̃9:16 | x9:16)

· · · · · ·
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Combining tiles with divide-and-conquer SMC

4 quadrants → 2 halves

✷ Resample and merge catalogs from adjacent quadrants

✷ Compute weights for merged catalogs, e.g.,
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Combining tiles with divide-and-conquer SMC
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Combining tiles with divide-and-conquer SMC

2 halves → 1 image

✷ Resample and merge catalogs from adjacent halves

✷ Compute weights for merged catalogs, e.g.,

wn
1:16 ∝

p(z̃n1:16)p(x
n
1:16 | z̃n1:16)

p(z̃n1:8)p(x
n
1:8 | z̃n1:8) p(z̃n9:16)p(x

n
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Combining tiles with divide-and-conquer SMC

Discard detections in the padded region

p(z1:16 | x1:16)

p(z̃1:8 | x1:8)

p(z̃1:4 | x1:4)

p(z̃1:2 | x1:2)

p(z̃1 | x1) p(z̃2 | x2)

p(z̃3:4 | x3:4)

p(z̃3 | x3) p(z̃4 | x4)

p(z̃5:8 | x5:8)

p(z̃5:6 | x5:6)

p(z̃5 | x5) p(z̃6 | x6)

p(z̃7:8 | x7:8) · · ·

p(z̃7 | x7) p(z̃8 | x8) · · ·

p(z̃9:16 | x9:16)

· · · · · ·
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Combining tiles with divide-and-conquer SMC

Case study: Crowded starfields (cont.)

✷ 1,000 synthetic images (32 pixels × 32 pixels)

➙ Up to 12 stars in each image

✷ Compare SMC and Source Extractor in terms of estimated number
of stars and estimated total flux

✷ SMC settings:

➙ Tiles of size 8 pixels × 8 pixels, each with 2-pixel-wide padded margin

➙ Make up to 5 detections per padded tile

➙ 2,500 catalogs for each s ∈ {0, 1, ..., 5}
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Combining tiles with divide-and-conquer SMC

Case study: Crowded starfields (cont.)

✷ 1,000 synthetic images (32 pixels × 32 pixels)

➙ Up to 12 stars in each image

✷ Compare SMC and Source Extractor in terms of estimated number
of stars and estimated total flux

✷ SMC settings:

➙ Tiles of size 8 pixels × 8 pixels, each with 2-pixel-wide padded margin

➙ Make up to 5 detections per padded tile

➙ 2,500 catalogs for each s ∈ {0, 1, ..., 5}
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Combining tiles with divide-and-conquer SMC

Accuracy of estimated number of stars
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Combining tiles with divide-and-conquer SMC

MAE of estimated number of stars
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Combining tiles with divide-and-conquer SMC

Accuracy of estimated total flux
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Combining tiles with divide-and-conquer SMC

Image reconstructions

Image One SMC catalog Source Extractor
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Combining tiles with divide-and-conquer SMC

Image reconstructions

Image One SMC catalog Source Extractor
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Limitations and future work

Limitations and future work
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Limitations and future work

Limitations and future work

✷ Limitation #1: Peaked likelihood → low effective sample size

➙ Next step: Incorporate tempering in the divide-and-conquer procedure

✷ Limitation #2: Mutation step of SMC absorbs most of runtime

➙ Next step: Use a gradient-based MCMC kernel or a normalizing flow

✷ Limitation #3: Requires an accurate parametric object model

➙ Next step: Investigate sensitivity to model misspecification
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Limitations and future work

Thank you!

https://linktr.ee/timwhite0
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