Sequential Monte Carlo for probabilistic object detection in images

Tim White

Joint work with Jeffrey Regier

Department of Statistics, University of Michigan

Joint Statistical Meetings August 5th, 2024

Introduction

Small object detection in biology

Malaria-infected blood cells

Broad Bioimage Benchmark Collection, BBBC041 Ljosa et al., 2012

Cancerous cervical cells

Cervix93 cytology dataset Phoulady and Mouton, 2018

Small object detection in remote sensing

Forest cover in West Africa

Brandt, et al. An unexpectedly large count of trees in the West African Sahara and Sahel. Nature, 2020.

Small object detection in remote sensing

Forest cover in West Africa

Brandt, et al. An unexpectedly large count of trees in the West African Sahara and Sahel. Nature, 2020.

Small object detection in astronomy

The Messier 15 globular cluster, imaged by Hubble/SDSS

Small object detection in astronomy

The Messier 15 globular cluster, imaged by Hubble/SDSS

Small object detection in astronomy

The Messier 15 globular cluster, imaged by Hubble/SDSS

* Astronomical cataloging is the task of inferring the properties of stars, galaxies, and other objects in astronomical images

Challenges of astronomical cataloging

Massive amount of data, typically with no ground truth

100 × 100 pixel subregion of Messier 15

Challenges of astronomical cataloging

- Massive amount of data, typically with no ground truth
- Objects may be faint and might visually overlap with one another

100 × 100 pixel subregion of Messier 15

Challenges of astronomical cataloging

- Massive amount of data, typically with no ground truth
- Objects may be faint and might visually overlap with one another
- * Requires transdimensional inference
 - → True number of objects is unknown
 - → Properties are ambiguous

 100×100 pixel subregion of Messier 15

Existing approaches to object detection

Non-probabilistic

- Use deterministic algorithm to make single-catalog estimates
- * Calibrated uncertainty

Methods:

- \rightarrow Threshold + watershed
- → (Many) CNN-based methods
- → Source Extractor

Existing approaches to object detection

Non-probabilistic

- Use deterministic algorithm to make single-catalog estimates
- * Calibrated uncertainty

Methods:

- \rightarrow Threshold + watershed
- → (Many) CNN-based methods
- → Source Extractor

Probabilistic

- Infer a posterior distribution over all possible catalogs
- ★ Calibrated uncertainty

Methods:

- → Markov chain Monte Carlo Sample catalogs from the posterior
- Variational inference
 Optimize an approximate posterior

We propose a probabilistic method for small object detection based on sequential Monte Carlo (SMC)

- We propose a probabilistic method for small object detection based on sequential Monte Carlo (SMC)
 - Our algorithm...
 - * runs in parallel on tiles (i.e., subregions) of an image

- We propose a probabilistic method for small object detection based on sequential Monte Carlo (SMC)
 - Our algorithm...
 - * runs in parallel on tiles (i.e., subregions) of an image
 - * leverages GPUs to efficiently evaluate latent variable catalogs

We propose a probabilistic method for small object detection based on sequential Monte Carlo (SMC)

Our algorithm...

- * runs in parallel on tiles (i.e., subregions) of an image
- * leverages GPUs to efficiently evaluate latent variable catalogs
- * performs transdimensional inference without transdimensional sampling

* Tasks for the remainder of this talk:

* Tasks for the remainder of this talk:

1 Introduce an SMC sampler for detecting objects in each tile

- * Tasks for the remainder of this talk:
 - Introduce an SMC sampler for detecting objects in each tile
 - Ombine the tile-level catalogs via divide-and-conquer SMC

An SMC sampler for one tile

*** Image** x with a height of H pixels and a width of W pixels

- *** Image** x with a height of H pixels and a width of W pixels
- \star Prior
 - → Number of objects $s \sim \text{Uniform}\{0, 1, 2, \dots, s_{\max}\}$
 - → Given *s*, locations $\ell_1, \ldots, \ell_s \stackrel{\text{iid}}{\sim} \text{Uniform}([0, H] \times [0, W])$

features
$$f_1, \ldots, f_s \stackrel{\text{iid}}{\sim} \mathcal{F}(\cdot)$$

$$\rightarrow \text{ Catalog } z = \{s\} \cup \{\ell_j, f_j\}_{j=1}^s$$

- *** Image** x with a height of H pixels and a width of W pixels
- \star Prior
 - → Number of objects $s \sim \text{Uniform}\{0, 1, 2, \dots, s_{\max}\}$
 - → Given *s*, locations $\ell_1, \ldots, \ell_s \stackrel{\text{iid}}{\sim} \text{Uniform}([0, H] \times [0, W])$

features
$$f_1, \ldots, f_s \stackrel{\text{iid}}{\sim} \mathcal{F}(\cdot)$$

$$\Rightarrow \textbf{Catalog } z = \{s\} \cup \{\ell_j, f_j\}_{j=1}^s$$

- ★ Likelihood
 - → Intensity at pixel (h, w) is $x_{hw} \mid z \sim \text{Poisson}(\lambda_{hw}(z))$
 - → $\lambda_{hw}(z) = \text{background intensity} + \text{function of features at } (h, w)$

- *** Image** x with a height of H pixels and a width of W pixels
- \star Prior
 - → Number of objects $s \sim \text{Uniform}\{0, 1, 2, \dots, s_{\max}\}$
 - → Given *s*, locations $\ell_1, \ldots, \ell_s \stackrel{\text{iid}}{\sim} \text{Uniform}([0, H] \times [0, W])$

features
$$f_1, \ldots, f_s \stackrel{\text{iid}}{\sim} \mathcal{F}(\cdot)$$

$$\rightarrow \text{ Catalog } z = \{s\} \cup \{\ell_j, f_j\}_{j=1}^s$$

- \star Likelihood
 - → Intensity at pixel (h, w) is x_{hw} | z ~ Poisson(λ_{hw}(z))
 → λ_{hw}(z) = background intensity + function of features at (h, w)

* Posterior $p(z \mid x) \propto p(z)p(x \mid z)$

- * Cannot directly sample catalogs from $p(z \mid x)$
- * Define a sequence of auxiliary distributions $p(z)p(x \mid z)^{\tau}$
 - → Increase temperature τ from 0 (prior) to 1 (posterior)

- * Cannot directly sample catalogs from $p(z \mid x)$
- * Define a sequence of auxiliary distributions $p(z)p(x \mid z)^{\tau}$
 - → Increase temperature τ from 0 (prior) to 1 (posterior)
- * Procedure:

- * Cannot directly sample catalogs from $p(z \mid x)$
- * Define a sequence of auxiliary distributions $p(z)p(x \mid z)^{ au}$
 - → Increase temperature τ from 0 (prior) to 1 (posterior)
- * Procedure:
 - → Sample N catalogs $z^{1:N} \stackrel{\text{iid}}{\sim} p(z)$ and initialize weights $w^{1:N} = \frac{1}{N}$

Ingredient #1: Likelihood tempering

- * Cannot directly sample catalogs from $p(z \mid x)$
- * Define a sequence of auxiliary distributions $p(z)p(x \mid z)^{ au}$
 - → Increase temperature τ from 0 (prior) to 1 (posterior)
- * Procedure:

→ Sample *N* catalogs $z^{1:N} \stackrel{\text{iid}}{\sim} p(z)$ and initialize weights $w^{1:N} = \frac{1}{N}$ While $\tau < 1$:

- * Cannot directly sample catalogs from $p(z \mid x)$
- * Define a sequence of auxiliary distributions $p(z)p(x \mid z)^{ au}$
 - → Increase temperature τ from 0 (prior) to 1 (posterior)
- * Procedure:
 - → Sample *N* catalogs $z^{1:N} \stackrel{\text{iid}}{\sim} p(z)$ and initialize weights $w^{1:N} = \frac{1}{N}$ While $\tau < 1$:
 - → **Resample** the catalogs to avoid weight degeneracy

- * Cannot directly sample catalogs from $p(z \mid x)$
- * Define a sequence of auxiliary distributions $p(z)p(x \mid z)^{ au}$
 - → Increase temperature τ from 0 (prior) to 1 (posterior)
- * Procedure:
 - → Sample *N* catalogs $z^{1:N} \stackrel{\text{iid}}{\sim} p(z)$ and initialize weights $w^{1:N} = \frac{1}{N}$ While $\tau < 1$:
 - → **Resample** the catalogs to avoid weight degeneracy
 - → Mutate the catalogs using an MCMC kernel

- * Cannot directly sample catalogs from $p(z \mid x)$
- * Define a sequence of auxiliary distributions $p(z)p(x \mid z)^{ au}$
 - → Increase temperature τ from 0 (prior) to 1 (posterior)
- * Procedure:
 - → Sample *N* catalogs $z^{1:N} \stackrel{\text{iid}}{\sim} p(z)$ and initialize weights $w^{1:N} = \frac{1}{N}$ While $\tau < 1$:
 - → **Resample** the catalogs to avoid weight degeneracy
 - → Mutate the catalogs using an MCMC kernel
 - → Increase temperature: $\tau \leftarrow \tau_{\text{previous}} + \delta$ for a suitable $\delta > 0$

- * Cannot directly sample catalogs from $p(z \mid x)$
- * Define a sequence of auxiliary distributions $p(z)p(x \mid z)^{\tau}$
 - → Increase temperature τ from 0 (prior) to 1 (posterior)
- * Procedure:
 - → Sample *N* catalogs $z^{1:N} \stackrel{\text{iid}}{\sim} p(z)$ and initialize weights $w^{1:N} = \frac{1}{N}$ While $\tau < 1$:
 - → **Resample** the catalogs to avoid weight degeneracy
 - → Mutate the catalogs using an MCMC kernel
 - → Increase temperature: $\tau \leftarrow \tau_{\text{previous}} + \delta$ for a suitable $\delta > 0$
 - → **Reweight**: $\forall n$, $w^n \propto p(x \mid z^n)^{\tau \tau_{\text{previous}}}$

Ingredient #1: Likelihood tempering

- * Cannot directly sample catalogs from $p(z \mid x)$
- * Define a sequence of auxiliary distributions $p(z)p(x \mid z)^{\tau}$
 - → Increase temperature τ from 0 (prior) to 1 (posterior)
- * Procedure:
 - → Sample *N* catalogs $z^{1:N} \stackrel{\text{iid}}{\sim} p(z)$ and initialize weights $w^{1:N} = \frac{1}{N}$ While $\tau < 1$:
 - → **Resample** the catalogs to avoid weight degeneracy
 - → Mutate the catalogs using an MCMC kernel
 - → Increase temperature: $\tau \leftarrow \tau_{\text{previous}} + \delta$ for a suitable $\delta > 0$
 - → **Reweight**: $\forall n$, $w^n \propto p(x \mid z^n)^{\tau \tau_{\text{previous}}}$

Output: Weighted catalogs $\{w^n, z^n\}_{n=1}^N \sim p(z \mid x)$

Ingredient #2: Stratification by number of objects

- Resample and mutate separately among catalogs with the same number of objects s
- * Number of catalogs corresponding to each $s \in \{0, 1, ..., s_{max}\}$ remains fixed through the algorithm

Ingredient #3: Padded tiles

- * Run sampler to generate $\{w_n, \tilde{z}_n\}_{n=1}^N \sim p(\tilde{z} \mid x),$ where $\tilde{z} = z \cup z^+$
- * Resample to obtain $\{1, \tilde{z}_n\}_{n=1}^N \sim p(\tilde{z} \mid x)$

SMC sampler

Ingredient #3: Padded tiles

- * Run sampler to generate $\{w_n, \tilde{z}_n\}_{n=1}^N \sim p(\tilde{z} \mid x),$ where $\tilde{z} = z \cup z^+$
- * Resample to obtain $\{1, \tilde{z}_n\}_{n=1}^N \sim p(\tilde{z} \mid x)$
- * Discard detections z^+ in the padded region to obtain $\{1, z_n\}_{n=1}^N \sim p(z \mid x)$

Case study: Crowded starfields

* 1,000 synthetic images (16 pixels \times 16 pixels)

→ Up to 8 stars in each image

Case study: Crowded starfields

- * 1,000 synthetic images (16 pixels imes 16 pixels)
 - → Up to 8 stars in each image
- Compare SMC and Source Extractor in terms of estimated number of stars and estimated total flux

Case study: Crowded starfields

- * 1,000 synthetic images (16 pixels imes 16 pixels)
 - → Up to 8 stars in each image
- Compare SMC and Source Extractor in terms of estimated number of stars and estimated total flux
- ★ SMC settings:
 - → 2-pixel-wide padded margin
 - → Make up to 10 detections per padded image
 - → 2,000 catalogs for each $s \in \{0, 1, ..., 10\}$

Accuracy of estimated number of stars

MAE of estimated number of stars

Accuracy of estimated total flux

☆

☆

★

Combining tiles with divide-and-conquer SMC

Divide-and-conquer SMC

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 2017, VOL. 26, NO. 2, 445–458 http://dx.doi.org/10.1080/10618600.2016.1237363

Divide-and-Conquer With Sequential Monte Carlo

F. Lindsten^a, A. M. Johansen^b, C. A. Naesseth^c, B. Kirkpatrick^d, T. B. Schön^e, J. A. D. Aston^f, and A. Bouchard-Côté^g

*Division of Systems and control, Department of Information Technology, Uppsala University, Uppsala, Sweder, "Department of Statistics, University of Warwick, Coverny, United Kingdom; "Department of Electrical Engineering, Linköping University, Linköping, Sweder, "Integret Met Computing, "Department of Information Technology, Uppsala University, Uppsala, Sweder, "University of Cambridge, Cambridge, United Kingdom; "Statistics, University of Briths Columbia, Wancouver, Canada

ABSTRACT

We propose a novel class of Sequential Monte Carlo (SMC) algorithms, appropriate for inference in probabilistic graphical models. This class of algorithms adopts a divide-and-conquer approach based upon an auxiliary tree-structured decomposition of the model of interest, turning the overall inferential task into a collection of recursively solved subproblems. The proposed method is applicable to a broad class of probabilistic graphical models, including models with loops. Unlike a standard SMC sampler, the proposed dividenad-conquer SMC employs multiple indespendent populations of weighted particles, which are re-sampled, merged, and propagated as the method progresses. We illustrate empirically that this approach can outperform standard methods in terms of the accuracy of the posterior expectation and marginal likelihood approximations. Divide-and-conquer SMC also opens up novel parallel implementation options and the possibility of concentrating the computational effort on the most challenging subproblems. We demonstrate its performance on a Markov random field and on a hierarchical logistic regression problem. Supplementary materials including profes and additional numerical results are available online.

ARTICLE HISTORY

Received June 2015 Revised June 2016

KEYWORDS

Bayesian methods; Graphical models; Hierarchical models; Particle filters

Tree of tile-level target distributions

Run SMC sampler in parallel on 16 tiles

Run SMC sampler in parallel on 16 tiles

16 tiles \rightarrow 8 pairs

- * Resample and merge catalogs from adjacent tiles
- * Compute weights for merged catalogs, e.g.,

$$w_{1:2}^n \propto \frac{p(\tilde{z}_{1:2}^n)p(x_{1:2}^n \mid \tilde{z}_{1:2}^n)}{p(\tilde{z}_1^n)p(x_1^n \mid \tilde{z}_1^n) \ p(\tilde{z}_2^n)p(x_2^n \mid \tilde{z}_2^n)}$$

16 tiles \rightarrow 8 pairs

- * Resample and merge catalogs from adjacent tiles
- * Compute weights for merged catalogs, e.g.,

$$w_{1:2}^n \propto \frac{p(\tilde{z}_{1:2}^n)p(x_{1:2}^n \mid \tilde{z}_{1:2}^n)}{p(\tilde{z}_1^n)p(x_1^n \mid \tilde{z}_1^n) \ p(\tilde{z}_2^n)p(x_2^n \mid \tilde{z}_2^n)}$$

8 pairs \rightarrow 4 quadrants

- * Resample and merge catalogs from adjacent pairs
- * Compute weights for merged catalogs, e.g.,

$$w_{1:4}^n \propto \frac{p(\tilde{z}_{1:4}^n)p(x_{1:4}^n \mid \tilde{z}_{1:4}^n)}{p(\tilde{z}_{1:2}^n)p(x_{1:2}^n \mid \tilde{z}_{1:2}^n) \ p(\tilde{z}_{3:4}^n)p(x_{3:4}^n \mid \tilde{z}_{3:4}^n)}$$

8 pairs \rightarrow 4 quadrants

- * Resample and merge catalogs from adjacent pairs
- * Compute weights for merged catalogs, e.g.,

$$w_{1:4}^n \propto \frac{p(\tilde{z}_{1:4}^n)p(x_{1:4}^n \mid \tilde{z}_{1:4}^n)}{p(\tilde{z}_{1:2}^n)p(x_{1:2}^n \mid \tilde{z}_{1:2}^n) \ p(\tilde{z}_{3:4}^n)p(x_{3:4}^n \mid \tilde{z}_{3:4}^n)}$$

4 quadrants \rightarrow 2 halves

- ✗ Resample and merge catalogs from adjacent quadrants
- * Compute weights for merged catalogs, e.g.,

$$w_{1:8}^n \propto \frac{p(\tilde{z}_{1:8}^n)p(x_{1:8}^n \mid \tilde{z}_{1:8}^n)}{p(\tilde{z}_{1:4}^n)p(x_{1:4}^n \mid \tilde{z}_{1:4}^n) \ p(\tilde{z}_{5:8}^n)p(x_{5:8}^n \mid \tilde{z}_{5:8}^n)}$$

4 quadrants \rightarrow 2 halves

- * Resample and merge catalogs from adjacent quadrants
- * Compute weights for merged catalogs, e.g.,

$$w_{1:8}^{n} \propto \frac{p(\tilde{z}_{1:8}^{n})p(x_{1:8}^{n} \mid \tilde{z}_{1:8}^{n})}{p(\tilde{z}_{1:4}^{n})p(x_{1:4}^{n} \mid \tilde{z}_{1:4}^{n}) \ p(\tilde{z}_{5:8}^{n})p(x_{5:8}^{n} \mid \tilde{z}_{5:8}^{n})}$$

2 halves \rightarrow 1 image

- * Resample and merge catalogs from adjacent halves
- * Compute weights for merged catalogs, e.g.,

$$w_{1:16}^n \propto \frac{p(\tilde{z}_{1:16}^n)p(x_{1:16}^n \mid \tilde{z}_{1:16}^n)}{p(\tilde{z}_{1:8}^n)p(x_{1:8}^n \mid \tilde{z}_{1:8}^n) \ p(\tilde{z}_{9:16}^n)p(x_{9:16}^n \mid \tilde{z}_{9:16}^n)}$$

Discard detections in the padded region

Case study: Crowded starfields (cont.)

* 1,000 synthetic images (32 pixels \times 32 pixels)

→ Up to 12 stars in each image

Case study: Crowded starfields (cont.)

- * 1,000 synthetic images (32 pixels \times 32 pixels)
 - → Up to 12 stars in each image
- Compare SMC and Source Extractor in terms of estimated number of stars and estimated total flux

Case study: Crowded starfields (cont.)

- * 1,000 synthetic images (32 pixels imes 32 pixels)
 - → Up to 12 stars in each image
- Compare SMC and Source Extractor in terms of estimated number of stars and estimated total flux
- ★ SMC settings:
 - \blacktriangleright Tiles of size 8 pixels \times 8 pixels, each with 2-pixel-wide padded margin
 - → Make up to 5 detections per padded tile
 - → 2,500 catalogs for each $s \in \{0, 1, ..., 5\}$

Accuracy of estimated number of stars

MAE of estimated number of stars

Accuracy of estimated total flux

Image

One SMC catalog

Source Extractor

ImageOne SMC catalogSource Extractor

Image

One SMC catalog

Source Extractor

*** Limitation #1:** Peaked likelihood \rightarrow low effective sample size

- *** Limitation #1:** Peaked likelihood \rightarrow low effective sample size
 - → Next step: Incorporate tempering in the divide-and-conquer procedure

- *** Limitation #1:** Peaked likelihood \rightarrow low effective sample size
 - → Next step: Incorporate tempering in the divide-and-conquer procedure

* Limitation #2: Mutation step of SMC absorbs most of runtime
Limitations and future work

- *** Limitation #1:** Peaked likelihood \rightarrow low effective sample size
 - → Next step: Incorporate tempering in the divide-and-conquer procedure

- *** Limitation #2:** Mutation step of SMC absorbs most of runtime
 - → Next step: Use a gradient-based MCMC kernel or a normalizing flow

Limitations and future work

- *** Limitation #1:** Peaked likelihood \rightarrow low effective sample size
 - → Next step: Incorporate tempering in the divide-and-conquer procedure

- *** Limitation #2:** Mutation step of SMC absorbs most of runtime
 - → Next step: Use a gradient-based MCMC kernel or a normalizing flow

*** Limitation #3:** Requires an accurate parametric object model

Limitations and future work

- * Limitation #1: Peaked likelihood \rightarrow low effective sample size
 - → Next step: Incorporate tempering in the divide-and-conquer procedure

★ Limitation #2: Mutation step of SMC absorbs most of runtime
→ Next step: Use a gradient-based MCMC kernel or a normalizing flow

★ Limitation #3: Requires an accurate parametric object model
→ Next step: Investigate sensitivity to model misspecification

Thank you!

https://linktr.ee/timwhite0

Tim White (UMich Statistics)

SMC for probabilistic object detection

JSM 2024